428
Views
1
CrossRef citations to date
0
Altmetric
Articles

An investigation on environmental pollution due to essential heavy metals: a prediction model through multilayer perceptrons

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Alani RA, Nwude D, Abati A, Akinrinade OE. 2020. Heavy metal contamination of vegetables planted in Lagos soils and their potential pollution risks. Ife J Agricult. 32(3):12–30.
  • Arshad H, Saleem M, Pasha U, Sadaf S. 2022. Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. Electron J Biotechnol. 55:55–64. doi:10.1016/j.ejbt.2021.11.003.
  • Baglaeva EM, Sergeev AP, Shichkin AV, Buevich AG. 2021. The extraction of the training subset for the spatial distribution modelling of the heavy metals in topsoil. CATENA. 207:105699. doi:10.1016/j.catena.2021.105699.
  • Cabaneros SMS, Calautit JKS, Hughes BR. 2017. Hybrid artificial neural network models for effective prediction and mitigation of urban roadside NO2 pollution. Energy Procedia. 142:3524–3530. doi:10.1016/j.egypro.2017.12.240.
  • Cristaldi A, Oliveri Conti G, Cosentino SL, Mauromicale G, Copat C, Grasso A, Zuccarello P, Fiore M, Restuccia C, Ferrante M. 2020. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environ Res. 185:109427. doi:10.1016/j.envres.2020.109427.
  • Crouse DL, Goldberg MS, Ross NA. 2009. A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmos Environ. 43(32):5075–5084. doi:10.1016/j.atmosenv.2009.06.040.
  • Cui KP, Dai RR, Liu X, Weerasooriya R, Hong ZY, Chen X, Wu YC. 2020. New strategy for fabricating Cd (II) sensing electrochemical interface based on enhanced adsorption followed by redox processes: Ferro-cerium oxide nanocomposite as an example. J Alloys Compd. 829:154551. doi:10.1016/j.jallcom.2020.154551.
  • Denisov IA. 2017. Luciferase-based bioassay for rapid pollutants detection and classification by means of multilayer artificial neural networks. Sens Actuators, B. 242:653–657. doi:10.1016/j.snb.2016.11.071.
  • Diaconu M, Pavel LV, Hlihor R-M, Rosca M, Fertu DI, Lenz M, Corvini PX, Gavrilescu M. 2020. Characterization of heavy metal toxicity in some plants and microorganisms–a preliminary approach for environmental bioremediation. N Biotechnol. 56:130–139. doi:10.1016/j.nbt.2020.01.003.
  • Falamaki A. 2013. Artificial neural network application for predicting soil distribution coefficient of nickel. J Environ Radioact. 115:6–12. doi:10.1016/j.jenvrad.2012.06.008.
  • Fang T, Jiang T, Yang K, Li J, Liang Y, Zhao X, Cui K. 2021. Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei. China. Environ Monitor Assess. 193(3):1–14.
  • Gill M, McKeever S, Gavaghan D. 2012. Modular mathematical modelling of biological systems. In: Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium. Orlando Florida. Vol. 36. p. 1–8.
  • Golui D, Datta SP, Dwivedi BS, Meena MC, Trivedi VK, Jaggi S, Bandyopadhyay KK. 2021. Assessing geoavailability of zinc, copper, nickel, lead and cadmium in polluted soils using short sequential extraction scheme, soil and sediment contamination. Soil Sediment Contamin. 30(1):74–91.
  • Guo Y, Liu R, Liu Y, Xiang D, Liu Y, Gui W, Li M, Zhu G. 2018. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Sci Total Environ. 613–614:783–791.
  • Jaskulak M, Grobelak A, Vandenbulcke F. 2020. Modelling assisted phytoremediation of soils contaminated with heavy metals–main opportunities, limitations, decision making and future prospects. Chemosphere. 249:126196.
  • Jeddi K, Fatnassi M, Chaieb M, Siddique KH. 2021. Tree species as a biomonitor of metal pollution in arid Mediterranean environments: case for arid southern Tunisia. Environ Sci Pollut Res Int. 28(22):28598–28605.
  • Jothimani K, Arulbalachandran D, Yasmin K. 2017. Amelioration of environmental stress for sustainable crop productivity. In: Dhanarajan A, editor. Sustainable agriculture towards food security. Singapore: Springer. p. 327–348.
  • Likus-Cieślik J, Socha J, Gruba P, Pietrzykowski M. 2020. The current state of environmental pollution with sulfur dioxide (SO2) in Poland based on sulfur concentration in Scots pine needles. Environ Pollut. 258:113559. doi:10.1016/j.envpol.2019.113559.
  • Luo X, Yang J. 2019. A survey on pollution monitoring using sensor networks in environment protection. J Sens. 2019:1–11. doi:10.1155/2019/6271206.
  • Martin GD. 2019. Addressing geographical bias: a review of Robinia pseudoacacia (black locust) in the Southern Hemisphere. S Afr J Bot. 125:481–492. doi:10.1016/j.sajb.2019.08.014.
  • Matsui K, Ishimura T, Mattonai M, Iwai I, Watanabe A, Teramae N, Ohtani H, Watanabe C. 2020. Identification algorithm for polymer mixtures based on Py-GC/MS and its application for microplastic analysis in environmental samples. J Anal Appl Pyrolysis. 149:104834. doi:10.1016/j.jaap.2020.104834.
  • Moyo B, Matodzi V, Legodi MA, Pakade VE, Tavengwa NT. 2020. Determination of Cd, Mn and Ni accumulated in fruits, vegetables and soil in the Thohoyandou town area, South Africa. Water SA. 46(2):285–290. doi:10.17159/wsa/2020.v46.i2.8244.
  • Ozyigit II, Karahan F, Yalcin IE, Hocaoglu-Ozyigit A, Ilcim A. 2022. Heavy metals and trace elements detected in the leaves of medicinal plants collected in the southeast part of Turkey. Arab J Geosci. 15(1):1–21. doi:10.1007/s12517-021-09264-9.
  • Ozyigit II, Yalcin B, Turan S, Saracoglu IA, Karadeniz S, Yalcin IE, Demir G. 2018. Investigation of heavy metal level and mineral nutrient status in widely used medicinal plants’ leaves in Turkey: Insights into health implications. Biol Trace Elem Res. 182(2):387–406.
  • Peng C, Wang M, Chen W. 2016. Modelling cadmium contamination in paddy soils under long-term remediation measures: Model development and stochastic simulations. Environ Pollut. 216:146–155. doi:10.1016/j.envpol.2016.05.038.
  • Pulscher LA, Gray R, McQuilty R, Rose K, Welbergen J, Phalen DN. 2020. Investigation into the utility of flying foxes as bioindicators for environmental metal pollution reveals evidence of diminished lead but significant cadmium exposure. Chemosphere. 254:126839. doi:10.1016/j.chemosphere.2020.126839.
  • Sari M, Cetiner BG. 2009. Predicting effect of physical factors on tibial motion using artificial neural networks. Expert Syst Appl. 36(6):9743–9746. doi:10.1016/j.eswa.2009.02.030.
  • Sari M, Cosgun T, Yalcin IE, Taner M, Ozyigit II. 2021. Deciding heavy metal levels in soil based on various ecological information through artificial intelligence modeling. Appl Artif Intelligence. doi:10.1080/08839514.2021.2014189.
  • Sen S, Dutta A, Ponnala R, Kamila B, Baltrėnas P, Baltrėnaitė E, Dutta S. 2020. Removal of hexavalent chromium from synthetic wastewater using alginate immobilized cyanobacteria: experiment and mathematical modeling. Environ Eng Sci. 37(4):283–294. doi:10.1089/ees.2019.0035.
  • Serbula SM, Miljkovic DD, Kovacevic RM, Ilic AA. 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf. 76(2):209–214. doi:10.1016/j.ecoenv.2011.10.009.
  • Shams SR, Jahani A, Kalantary S, Moeinaddini M, Khorasani N. 2021. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 37:100837. doi:10.1016/j.uclim.2021.100837.
  • Sinduja M, Sathya V, Maheswari M, Dhevagi P, Kalpana P, Dinesh GK, Prasad S. 2022. Evaluation and speciation of heavy metals in the soil of the sub urban region of southern India, soil and sediment contamination. Int J. 1–21. doi:10.1080/15320383.2022.2030298.
  • Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. 2022. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ Res. 204(Pt B):112082. doi:10.1016/j.envres.2021.112082.
  • Turan O, Ozdemir H, Demir G. 2020. Deposition of heavy metals on coniferous tree leaves and soils near heavy urban traffic. Front Life Sci RT. 1(1):35–41.
  • Tzvetkova N, Petkova K. 2015. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J Environ Biol. 36(1):59.
  • Yalcin IE, Ozyigit II, Dogan I, Demir G, Yarci C. 2020. Using the Turkish red pine tree to monitor heavy metal pollution. Pol J Environ Stud. 29(5):3881–3889. doi:10.15244/pjoes/114505.
  • Yang Y, Zhang H, Wang S, Yang W, Ding J, Zhang Y. 2020. Variation in sperm morphology and performance in tree sparrow (Passer montanus) under long-term environmental heavy metal pollution. Ecotoxicol Environ Saf. 197:110622. doi:10.1016/j.ecoenv.2020.110622.
  • Yilmaz N, Ozyigit II, Demir G, Yalcin IE. 2015. Determination of phytoplankton density, and study of the variation of nutrients and heavy metals in the surface water of Riva Stream; one of the water sources of Istanbul, Turkey. Desalin Water Treat. 55(3):810–820. doi:10.1080/19443994.2014.952674.
  • Zbikowski R. 2011. Use of artificial neural networks to identify the origin of green macroalgae. Estuarine Coastal Shelf Sci. 94(2):138–143. doi:10.1016/j.ecss.2011.05.027..
  • Zhao S, Afgan MS, Zhu H, Gao X. 2022. Femtosecond laser filamentation-induced breakdown spectroscopy combined with chemometrics methods for soil heavy metal analysis. Optik. 251:168444. doi:10.1016/j.ijleo.2021.168444.
  • Zhao YH, Jia X, Wang WK, Liu T, Huang SP, Yang MY. 2016. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd-and Pb-contaminated soils. Sci Total Environ. 565:586–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.