423
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Remediation of potentially toxic elements -containing wastewaters using water hyacinth – a review

, , , &

References

  • Al Rmalli SW, Harrington CF, Ayub M, Haris PI. 2005. A biomaterial based approach for arsenic removal from water. J Environ Monit. 7(4):279–282. doi:10.3390/su12051927.
  • Albright T, Moorhouse, T, Mcnabb . 2004. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. J Aquat Plant Manage. 42:73–84.
  • Alexander YS, Emmanuel H, Divine OA, Yildiz F. 2019. Effects of water hyacinth invasion on sustainability of fishing livelihoods along the River Tano and Abby-Tano Lagoon, Ghana. Cogent Food Agric. 5:1. doi:10.1080/23311932.2019.1654649.
  • Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş İ, Ünay A, Abdel-DAIM MM, Bin-Jumah M, Hasanuzzaman M, Kalderis D. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability. 12(5):1927. doi:10.3390/su12051927.
  • Bote MA, Naik VR, Jagadeeshgouda KB. 2020. Review on water hyacinth weed as a potential bio fuel crop to meet collective energy needs. Mater Sci Energy Technol. 3:397–406. doi:10.1016/j.mset.2020.02.003.
  • Carlini M, Castellucci S, Mennuni A. 2018. Water hyacinth biomass: chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia. 148:431–438. doi:10.1016/j.egypro.2018.08.106.
  • Casabianca ML, Laugier T, Posada F. 1995. Petroliferous wastewater treatment with water hyacinths (Raffinerie de Provence, France): experimental statement. Waste Manage. 15(8):651–655. doi:10.1016/0956-053X(96)00012-8.
  • Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC. 2016. Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech. 6(1):70. doi:10.1007/s13205-016-0385-y.
  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Y, Zheng B, Cai X. 2016. Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv. 6(7):5223–5232. doi:10.1039/C5RA26248H.
  • Du Y, Wu Q, Kong D, Shi Y, Huang X, Luo D, Chen Z, Xiao T, Leung JYS. 2020. Accumulation and translocation of heavy metals in water hyacinth: maximising the use of green resources to remediate sites impacted by e-waste recycling activities. Ecol Indic. 115:106384. doi:10.1016/j.ecolind.2020.106384.
  • Eid EM, Shaltout KH, Moghanm FS, Youssef MSG, El-Mohsnawy E, Haroun SA. 2019. Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile delta, Egypt: perspectives for phytoremediation. Int J Phytorem. 21(8):821–830. doi:10.1080/15226514.2019.1566885.
  • Elangovan R, Philip L, Chandraraj K. 2008. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater. 152(1):100–112. doi:10.1016/j.jhazmat.2007.06.067.
  • Fourest E, Volesky B. 1996. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargas sumfluitans. Environ Sci Technol. 30(1):277–282. doi:10.1021/es950315s.
  • Granato M. 1993. Cyanide degradation by water hyacinths. Biotechnol Lett. 15(10):1085–1090. doi:10.1007/BF00129943.
  • Grzegórska A, Rybarczyk P, Rogala A, Zabrocki D. 2020. Phytoremediation-from environment cleaning to energy generation-current status and future perspectives. Energies. 13(11):2905. doi:10.3390/en13112905.
  • Guna V, Ilangovan M, Anantha Prasad MG, Reddy N. 2017. Water Hyacinth: a unique source for sustainable materials and products. ACS Sustainable Chem Eng. 5(6):4478–4490. doi:10.1021/acssuschemeng.7b00051.
  • Gupta A, Balomajumder C. 2015. Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Engg. 7:74–82. doi:10.1016/j.jwpe.2015.05.008.
  • Hasan SH, Ranjan D, Talat M. 2010. Water hyacinth biomass (WHB) for the biosorption of hexavalent chromium: optimization of process parameters. Bioresources. 5:563–575. doi:10.15376/BIORES.5.2.563-575.
  • Hasan SH, Talat M, Rai S. 2007. Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes)). Bioresour Technol. 98(4):918–928. doi:10.1016/j.biortech.2006.02.042.
  • Hashem MA, Hasan M, Momen MA, Payel S, Nur-A-Tomal MS. 2020. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environ Sustain Indicat. 5:100022. doi:10.1016/j.indic.2020.100022.
  • Ibrahim M, Shaltout AA, Atta DE, Jalbout AF, Soylak M. 2009. Removal of COOH, Cd and Pb using water hyacinth: FTIR and flame atomic absorption study. JICS. 6(2):364–372. doi:10.1007/BF03245846.
  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ. 2007. Removal of aluminium by constructed wetlands with water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutritional conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng. 42(2):185–193. doi:10.1080/10934520601011361.
  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ. 2008. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manage. 87(3):450–460. doi:10.1016/j.jenvman.2007.01.013.
  • Jones JL, Jenkins RO, Haris PI. 2018. Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river. Sci Rep. 8(1):11071. doi:10.1038/s41598-018-29387-6.
  • Kadirvelu K, Kanmani P, Senthilkumar P, Subburam V. 2004. Separation of Mercury(II) from aqueous solution by adsorption on to an activated carbon prepared from Eichhornia crassipes. Adsorp Sci Technol. 22(3):207–222. doi:10.1260/0263617041503480.
  • Kelley C, Mielke RE, Dimaquibo D, Curtis AJ, DeWitt JG. 1999. Adsorption of Eu(III) onto roots of water hyacinth. Environ Sci Technol. 33(9):1439–1443. doi:10.1021/es9807789.
  • Kularatne RKA, Kasturiarachchi JC, Manatunge JMA, Wijeyekoon SLJ. 2009. Mechanisms of manganese removal from wastewaters in constructed wetlands comprising water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions. Water Environ Res. 81(2):165–172. doi:10.2175/106143008x370403.
  • Kumar V, Singh J, Chopra AK. 2018. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Int J Phytorem. 20(5):507–521. doi:10.1080/15226514.2017.1393391.
  • Kumar V, Singh J, Kumar P. 2020. Regression models for removal of heavy metals by water hyacinth (Eichhornia crassipes) from wastewater of pulp and paper processing industry. Environ Sustain. 3(1):35–44. doi:10.1007/s42398-019-00093-x.
  • Lenka M, Panda KK, Panda BB. 1990. Studies on the ability of water hyacinth (Eichhornia crassipes) to bioconcentrate and biomonitor aquatic mercury. Environ Pollut. 66(1):89–99. doi:10.1016/0269-7491(90)90201-M.
  • Li F, He X, Srishti A, Song S, Tan HTW, Sweeney DJ, Ghosh S, Wang C-H. 2021. Water hyacinth for energy and environmental applications: A review. Bioresour Technol. 327:124809.doi:10.1016/j.biortech.2021.124809.
  • Li M, Lou Z, Wang Y, Liu Q, Zhang Y, Zhou J, Qian G. 2015. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. Chemosphere. 119:778–785. doi:10.1016/j.chemosphere.2014.08.033.
  • Li Q, Tang L, Hu J, Jiang M, Shi X, Zhang T, Li Y, Pan X. 2018. Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes. R Soc Open Sci. 5(10):180966. doi:10.1098/rsos.180966.
  • Li M, Xiao X, Wang S, Zhang X, Li J, Pavlostathis SG, Luo X, Luo S, Zeng G. 2020. Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents. Environ Pollut. 261:114177. doi:10.1016/j.envpol.2020.114177.
  • Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y. 2015. Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLOS One. 10(4):e0124304. doi:10.1371/journal.pone.0124304.
  • Liao S-W, Chang W-L. 2004. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manage. 42:60–68.
  • Low KS, Lee CK, Tai CH. 1994. Biosorption of copper by water hyacinth roots. J Environ Sci Health. 29(1):171–188. doi:10.1080/10934529409376028.
  • Mader AE, Holtman GA, Welz PJ. 2022. Treatment wetlands and phyto-technologies for remediation of winery effluent: challenges and opportunities. Sci Total Environ. 807(Pt 1):150544. doi:10.1016/j.scitotenv.2021.150544.
  • Mahamadi C. 2011. Water hyacinth as a biosorbent: A review. African J Environ Sci Tech. 5:1137–1145. doi:10.5897/AJESTX11.007.
  • Mahmood T, Malik S, Hussain S. 2010. Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ASH. Bioresources. 5:1244–1256.
  • Malar S, Shivendra Vikram S, Jc Favas P, Perumal V. 2016. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 55(1):54. doi:10.1186/s40529-014-0054-6.
  • Mohanty K, Jha M, Meikap BC, Biswas MN. 2006. Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem Engg J. 117(1):71–77. doi:10.1016/j.cej.2005.11.018.
  • Mujere N. 2015. Water hyacinth: characteristics, problems, control options, and beneficial uses. Impact of water pollution on human health and environmental sustainability. In: Elaine McKeown, George Bugyi, editors. Practice, progress, and proficiency in sustainability. Pennsylvania (USA): IGI Global.
  • Murithi G, Onindo CO, Wambu EW, Muthakia GK. 2014. Removal of cadmium(II) ions from water by adsorption using water hyacinth (Eichhornia crassipes) biomass. BioRes. 9(2):3613–3631.
  • Mustafa HM, Hayder G. 2021. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: a review article. Ain Shams Engg J. 12(1):355–365. doi:10.1016/j.asej.2020.05.009.
  • Na Y, Lee J, Lee SH, Kumar P, Kim JH, Patel R. 2020. Removal of heavy metals by polysaccharide: a review. Polymer-Plastics Tech Materials. 59(16):1770–1790. doi:10.1080/25740881.2020.1768545.
  • Ndimele PE, Jimoh AA. 2011. Water Hyacinth (Eichhornia crassipes (Mart.) Solms.) in phytoremediation of heavy metal polluted water of Ologe Lagoon, Lagos, Nigeria. J Environ Sci. 5:424–433. doi:10.3923/rjes.2011.424.433.
  • Ndimele PE, Kumolu-Joh CA, Chukwuka KS, Ndimele CC, Ayorinde OA, Adaramoye OR. 2014. Phytoremediation of iron (Fe) and copper (Cu) by water hyacinth (Eichhornia crassipes (Mart.) Solms). Trends App Sci Resch. 9(9):485–493. doi:10.1155/2019/5656983.
  • Nyamunda BC, Chivhanga T, Guyo U, Chigondo F. 2019. Removal of Zn(II) and Cu(II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth. J Engg. 2019:1–11. doi:10.1155/2019/5656983.
  • Patel S. 2012. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol. 11(3):249–259. doi:10.1007/s11157-012-9289-4.
  • Pereira FJ, Castro EMd, Oliveira C d, Pires MF, Pereira MP, Ramos SJ, Faquin V. 2014. Lead tolerance of water hyacinth (Eichhornia crassipes Mart. – Pontederiaceae) as defined by anatomical and physiological traits. An Acad Bras Cienc. 86(3):1423–1433. doi:10.1590/0001-3765201420140079.
  • Pisitsak P, Phamonpon W, Soontornchatchavet P, Sittinun A, Ummartyotin S, Buajarern S, Inprasit T. 2019. The use of water hyacinth fibers to develop chitosan-based biocomposites with improved Cu2+ removal efficiency. Compos Commun. 16:1–4. doi:10.1016/j.coco.2019.08.003.
  • Priya ES, Selvan PS. 2017. Water hyacinth (Eichhorian crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem. 10(2):S3548–S3558. doi:10.1016/j.arabjc.2014.03.002.
  • Putra RS, Novarita D, Cahyana F. 2016. Remediation of lead (Pb) and copper (Cu) using water hyacinth [Eichornia crassipes (Mart.) Solms] with electro-assisted phytoremediation (EAPR). AIP Conference Proceedings 1744: 020052.
  • Qu W, He D, Guo Y, Tang Y, Shang J, Zhou L, Zhu R, Song R-J. 2019. Modified water hyacinth functionalized with citric acid as an effective and inexpensive adsorbent for heavy metal ion removal. Ind Eng Chem Res. 58(40):18508–18518. doi:10.1021/acs.iecr.9b03401.
  • Rai PK. 2018. Heavy metal phyto-technologies from Ramsar wetland plants: green approach. Chem Ecol. 34(8):786–796. doi:10.1080/02757540.2018.1501476.
  • Raveendran S, Parameswaran B, Pandey A, Madhavan A, Alphonsa J, Narisetty V, Gnansounou E, Castro E, Faraco V. 2017. Water hyacinth a potential source for value addition: an overview. Bioresour Technol. 230:152–162. doi:10.1016/j.biortech.2017.01.035.
  • Rezania S, Ponraj M, Din MFM, Songip AR, Sairan FM, Chelliapan S. 2015a. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renewable Sustain Energy Rev. 41:943–954. doi:10.1016/j.rser.2014.09.006.
  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Md Din MF, Taib SM, Sabbagh F, Sairan FM. 2015b. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage. 163:125–133. doi:10.1016/j.jenvman.2015.08.018.
  • Romanova TE, Shuvaeva OV, Belchenko L. 2016. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int J Phytoremediation. 18(2):190–194. doi:10.1080/15226514.2015.1073674.
  • Saleh HM. 2012. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl Engg Design. 242:425–432. doi:10.1016/j.nucengdes.2011.10.023.
  • Sanmuga PE, Senthamil SP. 2017. Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem. 10:S3548–S3558. doi:10.1016/j.arabjc.2014.03.002.
  • Sarkar M, Rahman AKML, Bhoumik NC. 2017. Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resour Industry. 17:1–6. doi:10.1016/j.wri.2016.12.003.
  • Schneider IAH, Rubio J, Misra M, Smith RW. 1995. Eichhornia crassipes as biosorbent for heavy metal ions. Minerals Engg. 8(9):979–988. doi:10.1016/0892-6875(95)00061-T.
  • Schneider I, Rubio J, Ross S. 2001. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int J Miner Process. 62(1–4):111–120. doi:10.1016/S0301-7516(00)00047-8.
  • Sharma A, Aggarwal N, Saini A, Yadav A. 2015. Beyond biocontrol: water hyacinth-opportunities and challenges. J Environ Sci Technol. 9(1):26–48. doi:10.3923/jest.2016.26.48.
  • Shawky S, Abdel Geleel M, Aly A. 2005. Sorption of uranium by non-living water hyacinth roots. J Radioanal Nucl Chem. 265(1):81–84. doi:10.1007/s10967-005-0790-x.
  • Singh J, Kumar V, Kumar P, Kumar P, Yadav KK, Cabral-Pinto MMS, Kamyab H, Chelliapan S. 2021. An experimental investigation on phytoremediation performance of water lettuce (Pistia stratiotes L.) for pollutants removal from paper mill effluent. Water Environ Res. 93(9):1543–1553. doi:10.1002/wer.
  • Sinha S, Saxena R, Singh S. 2002. Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects. Environ Monit Assess. 80(1):17–31. doi:10.1023/A:1020357427074.
  • Tabla-Hernandez J, Rodriguez-Espinosa PF, Mendoza-Pérez JA, Sánchez-Ortíz E, Martinez-Tavera E, Hernandez-Ramirez AG. 2019. Assessment of potential toxic metals in a Ramsar wetland, Central Mexico and its self-depuration through Eichhornia crassipes. Water. 11(6):1248. doi:10.3390/w11061248.
  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engg. 2011:939161. doi:10.1155/2011/939161.
  • Ting WHT, Tan IAW, Salleh SF, Wahab NA. 2018. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J of Water Process Eng. 22:239–249. doi:10.1016/j.jwpe.2018.02.011.
  • Tripathi BD, Shukla SC. 1991. Biological treatment of wastewater by selected aquatic plants. Environ Poll. 69(1):69–78. doi:10.1016/0269-7491(91)90164-R.
  • Villamagna AM, Murphy BR. 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biol. 55(2):282–298. doi:10.1111/j.1365-2427.2009.02294.x.
  • Wang H, Xia W, Lu P. 2017. Study on adsorption characteristics of biochar on heavy metals in soil. Korean J Chem Eng. 34(6):1867–1873. doi:10.1007/s11814-017-0048-7.
  • Wang GX, Fuerstenau MC, Smith RW. 1999. Removal of metal ions by nonliving water hyacinth roots. Mining Metallurg Explor. 16(1):41–47. doi:10.1007/BF03402855.
  • Wang L, Wang Y, Ma F, Tankpa V, Bai S, Guo X, Wang X. 2019. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ. 668:1298–1309. doi:10.1016/j.scitotenv.2019.03.011.
  • Yahya MN. 1990. The absorption of metal ions by Eichhornia crassipes. Chem Speciation Bioavail. 2:85–91. doi:10.1080/09542299.1990.11083128.
  • Yang X, Zhang S, Ju M, Liu L. 2019. Preparation and modification of biochar materials and their application in soil remediation. Appl Sci. 9(7):1365. doi:10.3390/app9071365.
  • Yi Z-j, Yao J, Chen H-l, Wang F, Yuan Z-m, Liu X. 2016. Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact. 154:43–51. doi:10.1016/j.jenvrad.2016.01.012.
  • Zewge F, Woldemichael DB, Leta S. 2011. Potential of water hyacinth (Eichhornia crassipes (Mart.) Solms) for the removal of chromium from tannery effluent in constructed pond system. Ethiop J Sci. 34:49–62.
  • Zhang F, Wang X, Xionghui J, Ma L. 2016. Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environ Pollut. 216:575–583. doi:10.1016/j.envpol.2016.06.013.
  • Zhang H, Xu F, Xue J, Chen S, Wang J, Yang Y. 2020. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: behavior and mechanism. Sci Rep. 10(1):6067. doi:10.1038/s41598-020-63000-z.
  • Zheng J-C, Liu H-Q, Feng H-M, Li W-W, Lam MH-W, Lam PK-S, Yu H-Q. 2016. Competitive sorption of heavy metals by water hyacinth roots. Environ Pollut. 219:837–845. doi:10.1016/j.envpol.2016.08.001.
  • Zhou J-M, Jiang Z-C, Qin X-Q, Zhang L-K, Huang Q-B, Xu G-L, Dionysiou DD. 2020. Efficiency of Pb, Zn, Cd, and Mn removal from Karst water by Eichhornia crassipes. IJERPH. 17(15):5329. doi:10.3390/ijerph17155329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.