151
Views
2
CrossRef citations to date
0
Altmetric
Articles

Assessment of the antioxidative response and culturable micro-organisms of Lygeum spartum Loefl. ex L. for prospective phytoremediation applications

, , , &

References

  • Adebiyi AP, Adigun HO, Lawal KJ, Salami KD, Adekunle VAL, Oyelakin JA. 2021. Impact of cement dust on physical and chemical nutrients properties of forest topsoil. JASEM. 25(5):695–700. doi:10.4314/jasem.v25i5.2.
  • Al-Khashman OA, Shawabkeh RA. 2006. Metals distribution in soils around the cement factory in southern Jordan. Environ Pollut. 140(3):387–394. doi:10.1016/j.envpol.2005.08.023.
  • Almehdi A, El-Keblawy A, Shehadi I, El-Naggar M, Saadoun I, Mosa KA, Abhilash PC. 2019. Old leaves accumulate more heavy metals than other parts of the desert shrub Calotropis procera at a traffic-polluted site as assessed by two analytical techniques. Int J Phytorem. 21(12):1254–1262. doi:10.1080/15226514.2019.1619164.
  • Aranda E. 2016. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol. 38:1–8. doi:10.1016/j.copbio.2015.12.002.
  • Baoune H, El Hadj-Khelil AO, Pucci G, Sineli P, Loucif L, Polti MA. 2018. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicol Environ Saf. 147:602–609.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Bayouli IT, Bayouli HT, Dell'Oca A, Meers E, Sun J. 2021. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecol Indic. 125:107508. doi:10.1016/j.ecolind.2021.107508.
  • Bazot M, Lesur C, Fadel Bio Beri M. L, Béjot P, Loyce C. 2014. Mesurer et prédire les rendements du Miscanthus (Miscanthus × giganteus) en parcelles agricoles. In: Le Cahier des Techniques de l'INRA. Vol. 81.
  • Cem ESEN, Balci A. 2008. Application of microwave–assisted digestion to trace heavy metal determination in sea sediment sample. Hacettepe J Biol Chem. 36(2):123–128.
  • Chaturvedi R, Favas PJ, Pratas J, Varun M, Paul MS. 2021. Harnessing Pisum sativum–Glomus mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. Int J Phytoremediation. 23(3):279–290.
  • Chen C, Habert G, Bouzidi Y, Jullien A. 2010. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Cleaner Prod. 18(5):478–485. doi:10.1016/j.jclepro.2009.12.014.
  • Chen Z, Pan X, Chen H, Guan X, Lin Z. 2016. Biomineralization of Pb (II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead–Zinc mine tailings. J Hazard Mater. 301:531–537.
  • Das BK, Roy A, Singh S, Bhattacharya J. 2009. Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol. 8(3):257–274. doi:10.1007/s11157-009-9161-3.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ. 6(4):18.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84(3):489–500. doi:10.1111/j.1469-8137.1980.tb04556.x.
  • Gomes MP, Carvalho M, Carvalho GS, Marques TCLLSM, Garcia QS, Guilherme LRG, Soares AM. 2013. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. Int J Phytoremediation. 15(7):633–646.
  • Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 106(1):207–212. doi:10.1016/0003-2697(80)90139-6.
  • Haridas S, Albert R, Binder M, Bloem J, LaButti K, Salamov A, Andreopoulos B, Baker SE, Barry K, Bills G, et al. 2020. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud Mycol. 96:141–153. doi:10.1016/j.simyco.2020.01.003.
  • Haroon M, Khan ST, Malik A. 2022. Zinc-solubilizing bacteria: an option to increase zinc uptake by plants. In: Microbial biofertilizers and micronutrient availability. Cham: Springer. p. 207–238.
  • Hua S, Tian H, Wang K, Zhu C, Gao J, Ma Y, Xue Y, Wang Y, Duan S, Zhou J. 2016. Atmospheric emission inventory of hazardous air pollutants from China's cement plants: temporal trends, spatial variation characteristics and scenario projections. Atmos Environ. 128:1–9. doi:10.1016/j.atmosenv.2015.12.056.
  • Ilyas S, Rehman A. 2015. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ Monit Assess. 187(1):1–7. doi:10.1007/s10661-014-4115-9.
  • ISO 11465. 1993. Soil quality—determination of dry matter and water content on a mass basis—gravimetric method.
  • Jayanthi B, Emenike CU, Agamuthu P, Simarani K, Mohamad S, Fauziah SH. 2016. Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena. 147:25–31. doi:10.1016/j.catena.2016.06.033.
  • Kee JC, Gonzales MJ, Ponce O, Ramírez L, León V, Torres A, Corpus M, Loayza-Muro R. 2018. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Environ Sci Pollut Res Int. 25(34):33957–33966.
  • Khan AG. 2020. Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa). Int J Phytoremediation. 22(9):900–915. doi:10.1080/15226514.2020.1774504.
  • Ko KS, Kim JM, Kim JW, Jung BY, Kim W, Kim IJ, Kook YH. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J Clin Microbiol. 41(7):2908–2914.
  • Kosugi H, Kikugawa K. 1985. Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids. 20(12):915–921. doi:10.1007/BF02534777.
  • Krämer U. 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol. 61:517–534. doi:10.1146/annurev-arplant-042809-112156.
  • Li X, Xiao J, Salam MMA, Ma C, Chen G. 2021. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil. Int J Phytoremediation. 23(4):387–399.
  • Maharachchikumbura SSN, Hyde KD, Jones E, McKenzie EHC, Bhat DJ, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. 2016. Families of Sordariomycetes. Fungal Divers. 79(1):1–317. doi:10.1007/s13225-016-0369-6.
  • Maleva MG, Nekrasova GF, Borisova GG, Chukina NV, Ushakova OS. 2012. Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russ J Plant Physiol. 59(2):190–197. doi:10.1134/S1021443712020069.
  • Malook I, Rehman SU, Khan MD, El-Hendawy SE, Al-Suhaibani NA, Aslam MM, Jamil M. 2017. Heavy metals induced lipid peroxidation in spinach mediated with microbes. Pak. J. Bot. 49(6):2301–2308.
  • Meers E, Ruttens A, Geebelen W, Vangronsveld J, Samson R, Vanbroekhoven K, Vandegehuchte M, Diels L, Tack FMG. 2006. Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils. Environ Monit Assess. 120(1–3):243–267.
  • Mingorance MD, Valdes B, Oliva SR. 2007. Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int. 33(4):514–520.
  • Murphy A, Taiz L. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol. 109(3):945–954.
  • Nicholson WL. 2002. Roles of Bacillus endospores in the environment. Cell Mol Life Sci. 59(3):410–416. doi:10.1007/s00018-002-8433-7.
  • Pal R, Kaur R, Rajwar D, Narayan Rai JP. 2019. Induction of non-protein thiols and phytochelatins by cadmium in Eichhornia crassipes. Int J Phytoremediation. 21(8):790–798.
  • Panchenko L, Muratova A, Biktasheva L, Galitskaya P, Golubev S, Dubrovskaya E, Selivanovskaya S, Turkovskaya O. 2022. Study of Boraginaceae plants for phytoremediation of oil-contaminated soil. Int J Phytorem. 24(2):215–223.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–IN18. doi:10.1016/S0007-1536(70)80110-3.
  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H. 2013. Climate change driven plant–metal–microbe interactions. Environ Int. 53:74–86.
  • Raklami A, Tahiri A, Bechtaoui N, Abdelhay EG, Pajuelo E, Baslam M, Meddich A, Oufdou K. 2021. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J Environ Sci. 99:210–221. doi:10.1016/j.jes.2020.06.032.
  • Rasool A, Irum S. 2014. Toxic metal effect on filamentous fungi isolated from the contaminated soil of Multan and Gujranwala. J Bioresource Manage. 1(2):1. doi:10.35691/JBM.4102.0006.
  • Samecka-Cymerman A, Kempers AJ. 1999. Bioindication of heavy metals in the town Wrocław (Poland) with evergreen plants. Atmospheric Environment. 33(3):419–430. doi:10.1016/S1352-2310(98)00202-7.
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 232:1–44.
  • Sharma B, Dangi AK, Shukla P. 2018. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage. 210:10–22.
  • Siddique A, Kandpal G, Kumar P. 2018. Proline accumulation and its defensive role under diverse stress condition in plants: an overview. J Pure Appl Microbiol. 12(3):1655–1659. doi:10.22207/JPAM.12.3.73.
  • Stackebrandt E, Goodfellow M. 1991. Nucleic acid techniques in bacterial systematics. NewYork, Brisbane, Toronto, Singapore: Wiley.
  • Sun YB, Zhou QX, Liu WT, An J, Xu ZQ, Wang L. 2009. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater. 165(1–3):1023–1028. doi:10.1016/j.jhazmat.2008.10.097.
  • Sun RL, Zhou QX, Sun FH, Jin CX. 2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot. 60(3):468–476. doi:10.1016/j.envexpbot.2007.01.004.
  • Taketani RG, Lançoni MD, Kavamura VN, Durrer A, Andreote FD, Melo IS. 2017. Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microb Ecol. 73(1):153–161. doi:10.1007/s00248-016-0835-4.
  • Torres-Cruz TJ, Hesse C, Kuske CR, Porras-Alfaro A. 2018. Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Appl Soil Ecol. 131:66–74. doi:10.1016/j.apsoil.2018.08.001.
  • Verla EN, Verla AW, Osisi AF, Okeke PN, Enyoh CE. 2019. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ Monit Assess. 191(12):1–11. doi:10.1007/s10661-019-7937-7.
  • Waksman SA. 1922. A method for counting the number of fungi in the soil. J Bacteriol. 7(3):339–341. doi:10.1128/jb.7.3.339-341.1922.
  • Xu Q. 2016. Heavy metal pollution exerts effect on the diversity and metabolic enzymes of heterotrophic bacteria in surface sediments of Jinzhou bay. Qingdao: Qingdao University of Technology.
  • Xu Z, Wu J, Li H, Chen Y, Xu J, Xiong L, Zhang J. 2018. Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity. Sci Total Environ. 625:1272–1282.
  • Zhang Z, Yin L, Li X, Zhang C, Liu C, Wu Z. 2018. The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil. Microb Pathog. 123:246–249. doi:10.1016/j.micpath.2018.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.