316
Views
2
CrossRef citations to date
0
Altmetric
Articles

Exogenous Hemin alleviates cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Akinyemi AJ, Faboya OL, Olayide I, Faboya OA, Ijabadeniyi T. 2017. Effect of cadmium stress on non-enzymatic antioxidant and nitric oxide levels in two varieties of maize (Zea mays). Bull Environ Contam Toxicol. 98(6):845–849. doi:10.1007/s00128-017-2069-7. PMID: 28357462.
  • Balestrasse KB, Noriega GO, Batlle A, Tomaro ML. 2006. Heme oxygenase activity and oxidative stress signaling in soybean leaves. Plant Sci. 170(2):339–346. doi:10.1016/j.plantsci.2005.09.001.
  • Bitrian M, Zarza X, Altabella T, Tiburcio AF, Alcázar R. 2012. Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites. 2(3):516–528. doi:10.3390/metabo2030516. PMID: 24957645.
  • Chen J. 2016a. Effects of exogenous auxins on growth and physiological characteristics of Maize seedlings under cadmium stress [dissertation]. Chongqing (China): Southwest University.
  • Chen L, Hu WF, Long C, Wang D. 2021. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. Chemosphere. 262:127809. doi:10.1016/j.chemosphere.2020.127809. PMID: 32781331.
  • Chen Q. 2016b. Heme oxygenase 1/carbon monoxide, ferrous iron system is involved in hemin-induced alleviation of heavy metal stress [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Colak N, Tarkowski P, Ayaz FA. 2020. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Bot Serb. 44(2):191–201. doi:10.2298/BOTSERB2002191C.
  • Ding S, Shao X, Li J, Ahammed GJ, Yao Y, Ding J, Hu Z, Yu J, Shi K. 2021. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant Cell Environ. 44(5):1596–1610. PMID: 33547690. doi:10.1111/pce.14019.
  • Feng L, Yan H, Dai C, Xu W, Gu F, Zhang F, Li T, Xian J, He X, Yu Y, et al. 2020. The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. Sci Total Environ. 729:138972. doi:10.1016/j.scitotenv.2020.138972. PMID: 32498171.
  • Gao J, Liu L, Ma N, Yang J, Dong Z, Zhang J, Zhang J, Cai M. 2020. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Environ Pollut. 263(Pt A):114412. doi:10.1016/j.envpol.2020.114412. PMID: 32217380.
  • González-Mendoza D, Gil FEY, Escoboza-Garcia F, Santamaria JM, Zapata-Perez O. 2013. Copper stress on photosynthesis of black mangle (Avicennia germinans). An Acad Bras Cienc. 85(2):665–670. doi:10.1590/S0001-37652013000200013. PMID: 23828363.
  • Griffiths G. 2020. Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem. 64(3):501–512. doi:10.1042/EBC20190085. PMID: 32602544.
  • Gu Q, Wang C, Xiao Q, Chen Z, Han Y. 2021. Melatonin confers plant cadmium tolerance: an update. IJMS. 22(21):11704. PMID: 34769134. doi:10.3390/ijms222111704.
  • Han Y. 2008. The modulatory role of heme oxygenase/carbon monoxide signal system in mercury and cadmium–induced oxidative stress in Medicago sativa L [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Han Y, Xuan W, Yu T, Fang WB, Lou TL, Gao Y, Chen XY, Xiao X, Shen WB. 2007. Exogenous hematin alleviates mercury-induced oxidative damage in the roots of medicago sativa. J Integr Plant Biol. 49(12):1703–1713. doi:10.1111/j.1744-7909.2007.00592.x.
  • He F, Zhao Q, Huang JL, Niu MX, Feng HC, Shi YJ, Zhao KJ, Cui XL, Wu XL, Mi JX, et al. 2021. External application of nitrogen alleviates toxicity of cadmium on poplars via starch and sucrose metabolism. Tree Physiol. 41(11):2126–2141. doi:10.1093/treephys/tpab065. PMID: 33960381.
  • He JY, MF LI, Zhang J, Zhuang ZK, Lian WW. 2019. Structure and formaldehyde adsorption properties of modified pineapple leaf fiber. Text. Res. J. 40(5):1–6. doi:10.13475/j.fzxb.20180607806.
  • Huang BK, Xu S, Xuan W, LI M, Cao ZY, Liu KL, Ling TF, Shen WB. 2006. Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J Integrative Plant Biology. 48(3):249–254. doi:10.1111/j.1744-7909.2006.00220.x.
  • Jan R, Khan MA, Lubna AS, Lee I, Kim KM. 2015. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants (Basel). 8(10):363. PMID: 31547575. doi:10.3390/plants8100363.
  • Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. 2020. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ. 43(5):1273–1287. doi:10.1111/pce.13733. PMID: 31994745.
  • Kollárová K, Kusá Z, Vatehová-Vivodová Z, Lišková D. 2018a. The response of maize protoplasts to cadmium stress mitigated by silicon. Ecotoxicol Environ Saf. 170:488–494. doi:10.1016/j.ecoenv.2018.12.016. PMID: 30553927.
  • Kollárová K, Kamenická V, Vatehová Z, Lišková D. 2018b. Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure. J Plant Physiol. 222:59–66. doi:10.1016/j.jplph.2017.12.017. PMID: 29407550.
  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 165(9):920–931. doi:10.1016/j.jplph.2006.11.014. PMID: 17913285.
  • Li C, Liu Y, Tian J, Zhu Y, Fan J. 2020. Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress. PLoS One. 15(12):e0243835. doi:10.1371/journal.pone.0243835. PMID: 33306745.
  • Lin Y, Li M, Huang L, Shen WB, Ren Y. 2012. Involvement of heme oxygenase-1 in β-cyclodextrin-Hemin complex-induced cucumber adventitious rooting process. Plant Cell Rep. 31(9):1563–1572. doi:10.1007/s00299-012-1270-8. PMID: 22532008.
  • Liu SX. 2017. Alleviation effects of exogenous melatonin on cadmium toxicity in rice [dissertation]. Beijing (China): China University of Geosciences.
  • Liu XM, Meng Y, Wei S, Gu WR. 2021. Exogenous Hemin confers cadmium tolerance by decreasing cadmium accumulation and modulating water status and matter accumulation in maize seedlings. Agronomy. 11(4):739. doi:10.3390/agronomy11040739.
  • Liu ZW. 2018. Apreliminary study on Hemin induced resistance to salt stress and alkaline stress in tobacco [dissertation]. Anhui (China): University of Science and technology of China.
  • Liu ZW, Yang QG, Zhang C, Gao Q, Xiao XY, You BW, Chen XP. 2018. Preliminary study on hemin-induced resistance to alkali stress of tobacco. Acta Tab Sin. 24(1):28–37. doi:10.16472/j.chinatobacco.2017.218.
  • Lopes MS, Araus JL. 2008. Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3− and NO3− in barley seedlings. Physiol Plant. 134(1):134–150. doi:10.1111/j.1399-3054.2008.01114.x. PMID: 18544123.
  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier M, Feraud M, Jouglet T, Suzuki A. 2006. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol. 140(2):444–456. doi:10.1104/pp.105.071910. PMID: 16407450.
  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S. 2006. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot. 57(8):1795–1807. doi:10.1093/jxb/erj196. PMID: 16698814.
  • Meng JR. 2015. Sceeenbvg and identification of different rice chultivrs for Cd tollerence and the alleviation of exogenous GSH on rice under stress [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Munné-Bosch S, Peñuelas J. 2003. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta. 217(5):758–766. doi:10.1007/s00425-003-1037-0. PMID: 12698367
  • Qin C, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Jin C. 2017. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 81(2):253–264. doi:10.1007/s10725-016-0202-y.
  • Qu DY, Gu WR, Zhang LG, Li CF, Chen XC, Li J, Li LJ, Xie TL, Wei S. 2019. Role of Chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress. Russ J Plant Physiol. 66(1):140–151. doi:10.1134/S102144371901014X.
  • Ren JH, Xie T, Wang YL, Li HB, Liu TT, Zhang SQ, Yin LN, Wang SW, Deng XP, Ke QB. 2020. Coordinated regulation of carbon and nitrogen assimilation confers drought tolerance in maize. (Zea mays L.). Enviro Exp Bot. 176:104086. doi:10.1016/j.envexpbot.2020.104086.
  • Sahay S, Robledo-Arratia L, Glowacka K, Gupta M. 2021. Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L. Sci Rep. 11(1):7992. doi:10.1038/s41598-021-86401-0. PMID: 33846385.
  • Shakirova F, Allagulova C, Maslennikova D, Kristina F, Ruslan Y, Alsu L, Marina B, Azamat A. 2016. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiol Biochem. 108:539–548. doi:10.1016/j.plaphy.2016.07.013. PMID: 27611241.
  • Shi YR. 2009. Heme oxygenase is involved in salinity induced tomato lateral root development and its relationship with hydrogen peroxide [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Singh P, Singh I, Shah K. 2018. Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in silico answer. Front Plant Sci. 9:1948. doi:10.3389/fpls.2018.01948. PMID: 30697220.
  • Šípošová K, Labancová E, Kučerová D, Kollárová K, Vivodová Z. 2021. Effects of exogenous application of indole-3-butyric acid on maize plants cultivated in the presence or absence of cadmium. Plants (Basel). 10(11):2503. doi:10.3390/plants10112503.
  • Song WY, Sohn EJ, Martinoia E, Lee YK, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol. 21(8):914–919. doi:10.1038/nbt850. PMID: 12872132
  • Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS. 2014. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma. 251(5):1047–1065. doi:10.1007/s00709-014-0614-3. PMID: 24482190.
  • Sun HY, Wei XF, Sun XM, Jia FC, Li DJ, Li J. 2021a. [Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings]. Huan Jing Ke Xue. 42(3):1166–1176. doi:10.13227/j.hjkx.202007200. PMID: 33742913.
  • Sun GY, Meng Y, Wang Y, Zhao M, Wei S, Gu WR. 2021b. Exogenous Hemin optimized maize leaf photosynthesis, root development, grain filling, and resource utilization on alleviating cadmium stress under field condition. J Soil Sci Plant Nutr. 22(1):631–646. doi:10.1007/s42729-021-00674-y.
  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2005. OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot. 56(422):3207–3214. doi:10.1093/jxb/eri317. PMID: 16263903.
  • Tao Q, Jupa R, Dong Q, Yang X, Liu Y, Li B, Yuan S, Yin J, Xu Q, Li T, et al. 2021. Abscisic acid-mediated modifications in water transport continuum are involved in cadmium hyperaccumulation in Sedum alfredii. Chemosphere. 268:129339. doi:10.1016/j.chemosphere.2020.129339. PMID: 33360145.
  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, et al. 2010. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 22(8):2660–2679. doi: 10.2307/20780596. PMID: 208329.
  • Trubat R, Cortina J, Vilagrosa A. 2012. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia. 170(4):899–908. doi:10.1007/s00442-012-2380-2. PMID: 22717626.
  • Voigt C, Oster U, Börnke F, Jahns P, Dietz KJ, Leister D, Kleine T. 2010. In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUN-type of plastid signalling. Physiol Plant. 138(4):503–519. doi:10.1111/j.1399-3054.2009.01343.x. PMID: 20028479.
  • Wang M, Chen Z, Song W, Hong D, Huang L, Li Y. 2021. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull Environ Contam Toxicol. 106(1):65–74. doi:10.1007/s00128-020-03088-1. PMID: 33486543.
  • Wang T, Hua Y, Chen M, Zhang J, Guan C, Zhang Z. 2018. Mechanism enhancing arabidopsis resistance to cadmium: the role of NRT1.5 and proton pump. Front Plant Sci. 9:1892. doi:10.3389/fpls.2018.01892. PMID: 30619437.
  • Wang XX. 2017. Physiological and transcriptional regulatory mechanisms of siliconinalleviating cadmium stress in populus euramericana clone 1-214 [dissertation]. Shenyang (China): Shenyang Agricultural University.
  • Wang ZK. 2006. Effects of pollution on phytohormone contents and growth of Glycine max plants [dissertation]. Changsha (China): Hunan Agricultural University.
  • Wilkinson S, Bacon MA, Davies WJ. 2007. Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J Exp Bot. 58(7):1705–1716. doi:10.1093/jxb/erm021. PMID: 17374875.
  • Xie Y-J, Xu S, Han B, Wu M-Z, Yuan X-X, Han Y, Gu Q, Xu D-K, Yang Q, Shen W-B. 2011. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 66(2):280–292. doi:10.1111/j.1365-313X.2011.04488.x.
  • Xu X, Qian J, Xie E, Shi X, Zhao Y. 2018. Spatio-temporal change and pollution risk of agricultural soil cadmium in a rapidly industrializing area in the Yangtze delta region of China. IJERPH. 15(12):2743. PMID: 30563055. doi:10.3390/ijerph15122743.
  • Zhang B. 2010. The involvement of heme oxygenase/carbon monoxide system in cobalt chloride-induced lateral root development tomato seedlings [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Zhou WT. 2009. Heme oxygenase is involved in jasmonic acid and hemin-β-cyclodextrin-induced tomato lateral root development [dissertation]. Nanjing (China): Nanjing Agricultural University.
  • Zhu A, Liu H, Wang Y, Sun H, Han G. 2021. Grazing intensity changed the activities of nitrogen assimilation related enzymes in desert Steppe Plants. BMC Plant Biol. 21(1):436. doi:10.1186/s12870-021-03205-0. PMID: 34563114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.