375
Views
1
CrossRef citations to date
0
Altmetric
Articles

Integrating eco-technological approach for textile dye effluent treatment and carbon dioxide capturing from unicellular microalga Chlorella vulgaris RDS03: a synergistic method

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &

References

  • Abou Oualid H, Abdellaoui Y, Laabd M, El Ouardi M, Brahmi Y, Iazza M, Abou Oualid J. 2020. Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes: characterization, mechanism, recyclability, and RSM optimization. ACS Omega. 5(35):22192–22207. doi:10.1021/acsomega.0c02311.
  • Abou-Shanab RA, El-Dalatony MM, El-Sheekh MM, Ji MK, Salama ES, Kabra AN, Jeon BH. 2014. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol Bioproc E. 19(3):510–518. doi:10.1007/s12257-013-0485-z.
  • Andersen RA. 2005. Algal culturing techniques. Ist Ed. Cambridge, MA: Academic Press.
  • Bellucci M, Marazzi F, Musatti A, Fornaroli R, Turolla A, Visigalli S, Bargna M, Bergna G, Canziani R, Mezzanotte V, et al. 2021. Assessment of anammox, microalgae and white-rot fungi-based processes for the treatment of textile wastewater. PLos One. 16(3):e0247452. doi:10.1371/journal.pone.0247452.
  • Bhakta JN, Lahiri S, Pittman JK, Jana BB. 2015. Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide tolerant microalgae. J CO2 Util. 10:105–112. doi:10.1016/j.jcou.2015.02.001.
  • Chen CY, Chang HY, Chang JS. 2016. Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int J Hydrogen Energy. 41(7):4413–4420. doi:10.1016/j.ijhydene.2015.05.163.
  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M. 2007. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol. 98(6):1176–1182. doi:10.1016/j.biortech.2006.05.025.
  • Dawood S, Sen TK. 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 46(6):1933–1946. doi:10.1016/j.watres.2012.01.009.
  • De Morais MG, Costa JA. 2007. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol. 129(3):439–445. doi:10.1016/j.jbiotec.2007.01.009.
  • El-Kassas HY, Mohamed LA. 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res. 40(3):301–308. doi:10.1016/j.ejar.2014.08.003.
  • Elliston A, Collins SR, Wilson DR, Roberts IN, Waldron KW. 2013. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour Technol. 134:117–126. doi:10.1016/j.biortech.2013.01.084.
  • Entezari MH, Sharifalhoseini Z, Ashraf N. 2008. Fast and efficient removal of reactive black 5 from aqueous solution by a combined method of ultrasound and sorption process. Ultrason Sonochem. 15(4):433–437. doi:10.1016/j.ultsonch.2007.09.004.
  • Ertuğrul S, Bakır M, Dönmez G. 2008. Treatment of dye-rich wastewater by an immobilized thermophilic cyanobacterial strain: Phormidium sp. Ecol Eng. 32(3):244–248. doi:10.1016/j.ecoleng.2007.11.011.
  • Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal’s tissues. J Biol Chem. 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5.
  • Forss J, Welander U. 2009. Decolourization of reactive azo dyes with microorganisms growing on soft wood chips. Int Biodeterior Biodegradation. 63(6):752–758. doi:10.1016/j.ibiod.2009.05.005.
  • Gumbi ST, Majeke BM, Olaniran AO, Mutanda T. 2017. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl Biochem Biotechnol. 182(1):382–399. doi:10.1007/s12010-016-2333-z.
  • Gunasundari E, Kumar PS, Rajamohan N, Vellaichamy P. 2020. Feasibility of naphthol green-b dye adsorption using microalgae: thermodynamic and kinetic analysis. DWT. 192:358–370. doi:10.5004/dwt.2020.25777.
  • Ho SH, Chen Y-D, Chang C-Y, Lai Y-Y, Chen C-Y, Kondo A, Ren N-Q, Chang J-S. 2017. Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes. Biotechnol Biofuels. 10(1):27. doi:10.1186/s13068-017-0712-5.
  • Jaiswar S, Balar N, Kumar R, Patel MK, Chauhan PS. 2017. Morphological and molecular characterization of newly isolated microalgal strain Neochloris aquatica SJ-1 and its high lipid productivity. Biocatal Agric Biotechnol. 9:108–112. doi:10.1016/j.bcab.2016.12.009.
  • Jo S-W, Do J-M, Kang NS, Park JM, Lee JH, Kim HS, Hong JW, Yoon H-S. 2020. Isolation, identification, and biochemical characteristics of a cold-tolerant Chlorella vulgaris KNUA007 isolated from King George Island, Antarctica. JMSE. 8(11):935. doi:10.3390/jmse8110935.
  • Khan SA, Malla FA, Malav LC, Gupta N, Kumar A. 2018. Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids. Energy. 150:153–163. doi:10.1016/j.energy.2018.02.126.
  • Kusvuran E, Gulnaz O, Samil A, Yildirim Ö. 2011. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes. J Hazard Mater. 186(1):133–143. doi:10.1016/j.jhazmat.2010.10.100.
  • Lavajoo F, Taherizadeh M. 2016. Determination of the growth rates of Spirolina and Cheatoceros algae in urban waste sewage and their capability to deplete nitrate and phosphate content in the sewage. J Appl Sci Environ Manag. 20(3):691–699.
  • Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB, Hou YL. 2011. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res. 50(10):6496–6502. doi:10.1021/ie200040q.
  • Lortou U, Gkelis S. 2019. Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. J Biol Res-Thessaloniki. 26(1):1–12.
  • Lucas MS, Peres JA. 2007. Degradation of reactive black 5 by Fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes Pigm. 74(3):622–629. doi:10.1016/j.dyepig.2006.04.005.
  • Mahalakshmi S, Lakshmi D, Menaga U. 2015. Biodegradation of different concentration of dye (Congo red dye) by using green and blue green algae. Int J Environ Res. 9(2):735–744.
  • Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 14(1):217–232. doi:10.1016/j.rser.2009.07.020.
  • Moghazy RM. 2019. Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. WSA. 45(1 January):20–28. doi:10.4314/wsa.v45i1.03.
  • Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH. 2019. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol. 7:42. doi:10.3389/fbioe.2019.00042.
  • Nayak M, Karemore A, Sen R. 2016. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res. 16:216–223. doi:10.1016/j.algal.2016.03.020.
  • Nikulina GL, Deveĭkis DN, GIu P. 1995. Toxicity dynamics of anionic dyes in the air of a work place and long-term effects after absorption through the skin. Meditsina Truda I Promyshlennaia Ekologiia. 6:25–28.
  • Nithiya EM, Tamilmani J, Vasumathi KK, Premalatha M. 2017. Improved CO2 fixation with Oscillatoria sp. in response to various supply frequencies of CO2 supply. J CO2 Utili. 18:198–205. doi:10.1016/j.jcou.2017.01.025.
  • Perazzoli S, Bruchez BM, Michelon W, Steinmetz RL, Mezzari MP, Nunes EO, da Silva ML. 2016. Optimizing biomethane production from anaerobic degradation of Scenedesmus spp. biomass harvested from algae-based swine digestatetreatment. Int Biodeter Biodegr. 109:23–28. doi:10.1016/j.ibiod.2015.12.027.
  • Rajalakshmi AM, Silambarasan T, Dhandapani R. 2021. Small scale photo bioreactor treatment of tannery wastewater, heavy metal biosorption and CO2 sequestration using microalga Chlorella sp.: a biodegradation approach. Appl Water Sci. 11(7):1–12. doi:10.1007/s13201-021-01438-w.
  • Röck M, Saade MR, Balouktsi M, Rasmussen FN, Birgisdottir H, Frischknecht R, Habert G, Lützkendorf T, Passer A. 2020. Embodied GHG emissions of buildings–the hidden challenge for effective climate change mitigation. Appl Energy. 258:114107. doi:10.1016/j.apenergy.2019.114107.
  • Royer B, Cardoso NF, Lima EC, Macedo TR, Airoldi C. 2010. A useful organofunctionalized layered silicate for textile dye removal. J Hazard Mater. 181(1-3):366–374. doi:10.1016/j.jhazmat.2010.05.019.
  • Ruiz J, Alvarez P, Arbib Z, Garrido C, Barragan J, Perales JA. 2011. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediation. 13(9):884–896. doi:10.1080/15226514.2011.573823.
  • Sadeghizadeh A, Farhad Dad F, Moghaddasi L, Rahimi R. 2017. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresour Technol. 243:441–447. doi:10.1016/j.biortech.2017.06.147.
  • Sanjivkumar M, Brindhashini A, Deivakumari M, Palavesam A, Immanuel G. 2018. Investigation of saccharification and bioethanol production from pretreated agro-residues using a mangrove associated actinobacterium Streptomyces variabilis (MAB3). Waste Biomass Valor. 9(6):969–984. doi:10.1007/s12649-017-9886-0.
  • Selvan ST, Chandrasekaran R, Muthusamy S, Balasundaram S, Ramamurthy D. 2022. Eco-technological method for carbon dioxide biosorption and molecular mechanism of the RuBisCO enzyme from unicellular microalga Chlorella vulgaris RDS03: a synergistic approach. Biomass Convers Biorefin. 12(4):1–19.
  • Selvan ST, Govindasamy B, Muthusamy S, Ramamurthy D. 2019. Exploration of green integrated approach for effluent treatment through mass culture and biofuel production from unicellular alga, Acutodesmus obliquus RDS01. Int J Phytoremediation. 21(13):1305–1322. doi:10.1080/15226514.2019.1633255.
  • Selvan ST, Muthusamy S, Chandrasekaran R, Ramamurthy D, Balasundaram S. 2022. Modeling and dynamic design of an artificial culture medium for heterotrophic cultivation of Tetradesmus obliquus RDS01 for CO2 sequestration and green biofuels production: an eco-technological approach. Biomass Convers Biorefin. 12(6):1–23.
  • Sharma AK, Sahoo PK, Singhal S, Patel A. 2016. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech. 6(2):1–12. doi:10.1007/s13205-016-0434-6.
  • Silambarasan TS, Bajwa K, Dhandapani R. 2017. Optimization and mass culture of Acutodesmus obliquus RDS01 under open phototrophic pond cultivation for enhancing biodiesel production. Biofuels. 8(2):243–252. doi:10.1080/17597269.2016.1221301.
  • Singh RP, Singh PK, Singh RL. 2014. Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol Int. 21(2):160–166. doi:10.4103/0971-6580.139797.
  • Skrupski B, Wilson KE, Goff KL, Zou J. 2013. Effect of pH on neutral lipid and biomass accumulation in microalgal strains native to the Canadian Prairies and the Athabasca oil sands. J Appl Phycol. 25(4):937–949.
  • Soeprobowati TR, Hariyati R. 2017. The phycoremediation of textile wastewater discharge by Chlorella pyrenoidosa H. Chick, Arthrospira platensis Gomont, and Chaetoceros calcitrans (Paulson) H. Takano. Aquac Aquar Conserv Legis. 10(3):640–651.
  • Sreekanth D, Pooja K, Seeta Y, Himabindu V, Reddy PM. 2014. Bioremediation of dairy wastewater using microalgae for the production of biodiesel. Int J Adv Sci. 2:783–791.
  • Subashini PS, Rajiv P. 2018. Chlorella vulgaris DPSF 01: a unique tool for removal of toxic chemicals from tannery wastewater. Afr J Biotechnol. 17(8):239–248. doi:10.5897/AJB2017.16359.
  • Tamil Selvan S, Velramar B, Ramamurthy D, Balasundaram S, Sivamani K. 2020. Pilot scale wastewater treatment, CO2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. Int J Phytoremediation. 22(14):1462–1479. doi:10.1080/15226514.2020.1782828.
  • Varela JC, Pereira H, Vila M, Leon R. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth Res. 125(3):423–436. doi:10.1007/s11120-015-0149-2.
  • Vijayaraghavan G, Shanthakumar S. 2019. Removal of Crystal violet dye in textile effluent by coagulation using algal alginate from brown algae Sargassum sp. International Conference on Recent Trends in Clean Technologies for Sustainable Environment (CTSE-2019) 26:27.
  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T. 2014. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol. 172:169–173. doi:10.1016/j.biortech.2014.09.032.
  • Wilson MH, Groppo J, Placido A, Graham S, Morton SA, Santillan-Jimenez E, Shea A, Crocker M, Crofcheck C, Andrews R. 2014. CO2 recycling using microalgae for the production of fuels. Appl Petrochem Res. 4(1):41–53. doi:10.1007/s13203-014-0052-3.
  • Yanuhar U, Caesar NR, Musa M. 2019. Identification of local isolate of microalgae Chlorella vulgaris using ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene. IOP Conf Ser: Mater Sci Eng. 546(2):022038. doi:10.1088/1757-899X/546/2/022038.
  • Zhao X, Moates GK, Elliston A, Wilson DR, Coleman MJ, Waldron KW. 2015. Simultaneous saccharification and fermentation of steam exploded duckweed: improvement of the ethanol yield by increasing yeast titre. Bioresour Technol. 194:263–269. doi:10.1016/j.biortech.2015.06.131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.