207
Views
1
CrossRef citations to date
0
Altmetric
Articles

Potential of magnetic quinoa biosorbent composite and HNO3 treated biosorbent for effective sequestration of chromium (VI) from contaminated water

, , , , , , , & show all

References

  • Ahmad I, Akhtar MJ, Jadoon IBK, Imran M, Imran M, Ali S. 2017. Equilibrium modeling of cadmium biosorption from aqueous solution by compost. Environ Sci Pollut Res Int. 24(6):5277–5284. doi:10.1007/s11356-016-8280-y.
  • Ahmad I, Farwa U, Khan ZUH, Imran M, Khalid MS, Zhu B, Rasool A, Shah GM, Tahir M, Ahmed M, et al. 2022. Biosorption and health risk assessment of arsenic contaminated water through cotton stalk biochar. Surf Interfaces. 29:101806.
  • Aigbe UO, Das R, Ho WH, Srinivasu V, Maity A. 2018. A novel method for removal of Cr (VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep Purif Technol. 194:377–387. doi:10.1016/j.seppur.2017.11.057.
  • Aigbe UO, Osibote OA. 2020. A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J Environ Chem Eng. 8(6):104503. doi:10.1016/j.jece.2020.104503.
  • Akram M, Khan B, Imran M, Ahmad I, Ajaz H, Tahir M, Rabbani F, Kaleem I, Nadeem Akhtar M, Ahmad N, et al. 2019. Biosorption of lead by cotton shells powder: characterization and equilibrium modeling study. Int J Phytoremediation. 21(2):138–144. doi:10.1080/15226514.2018.1488810.
  • Ali A, Saeed K, Mabood F. 2016. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandr Eng J. 55(3):2933–2942. doi:10.1016/j.aej.2016.05.011.
  • Ali HM, Essawy AA, Elnasr TAS, Aldawsari AM, Alsohaimi I, Hassan HM, Abdel-Farid IB. 2021. Selective and efficient sequestration of Cr (VI) in ground water using trimethyloctadecylammonium bromide impregnated on Artemisia monosperma plant powder. J Taiwan Inst Chem Eng. 125:122–131. doi:10.1016/j.jtice.2021.05.051.
  • Aljerf L. 2018. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. J Environ Manage. 225:120–132. doi:10.1016/j.jenvman.2018.07.048.
  • Basaldella EI, Vázquez PG, Iucolano F, Caputo D. 2007. Chromium removal from water using LTA zeolites: effect of pH. J Colloid Interface Sci. 313(2):574–578. doi:10.1016/j.jcis.2007.04.066.
  • Bulgariu L, Ferţu DI, Cara IG, Gavrilescu M. 2021. Efficacy of alkaline-treated soy waste biomass for the removal of heavy-metal ions and opportunities for their recovery. Materials. 14(23):7413. doi:10.3390/ma14237413.
  • Cui Y, Masud A, Aich N, Atkinson JD. 2019. Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater. 368:477–486. doi:10.1016/j.jhazmat.2019.01.075.
  • Deng Y, Tang L, Zeng G, Zhu Z, Yan M, Zhou Y, Wang J, Liu Y, Wang J. 2017. Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl Catal B Environ. 203:343–354. doi:10.1016/j.apcatb.2016.10.046.
  • Din SU, Khan MS, Hussain S, Imran M, Haq S, Hafeez M, Rehman FU, Chen X. 2021. Adsorptive mechanism of chromium adsorption on siltstone–nanomagnetite–biochar composite. J Inorg Organomet Polym. 31(4):1608–1620. doi:10.1007/s10904-020-01829-7.
  • Din SU, Mahmood T, Naeem A, Shah NS, Hussain S, Imran M, Sultana S, Rehman AU. 2019. A novel insight into the adsorption interactions of arsenate with a fe–si binary oxide. Colloid J. 81(4):469–477. doi:10.1134/S1061933X19040045.
  • Enniya I, Rghioui L, Jourani A. 2018. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chem Pharm. 7:9–16. doi:10.1016/j.scp.2017.11.003.
  • Estefan G, Sommer R, Ryan J. 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region 3:65–119.
  • Gorny J, Billon G, Noiriel C, Dumoulin D, Lesven L, Madé B. 2016. Chromium behavior in aquatic environments: a review. Environ Rev. 24(4):503–516. doi:10.1139/er-2016-0012.
  • Guo H, Bi C, Zeng C, Ma W, Yan L, Li K, Wei K. 2018. Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J Mol Liq. 249:629–636. doi:10.1016/j.molliq.2017.11.096.
  • Gupta VK, Rastogi A, Nayak A. 2010. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci. 342(1):135–141. doi:10.1016/j.jcis.2009.09.065.
  • Hena S. 2010. Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer. J Hazard Mater. 181(1–3):474–479. doi:10.1016/j.jhazmat.2010.05.037.
  • Huang H, Wang Y, Zhang Y, Niu Z, Li X. 2020. Amino-functionalized graphene oxide for Cr (VI), Cu (II), Pb (II) and Cd (II) removal from industrial wastewater. Open Chem. 18(1):97–107. doi:10.1515/chem-2020-0009.
  • Hussain M, Imran M, Abbas G, Shahid M, Iqbal M, Naeem MA, Murtaza B, Amjad M, Shah NS, Ul Haq Khan Z, et al. 2020. A new biochar from cotton stalks for As (V) removal from aqueous solutions: its improvement with H3PO4 and KOH. Environ Geochem Health. 42(8):2519–2534. doi:10.1007/s10653-019-00431-2.
  • Imran M, Suddique M, Shah G, Ahmad I, Murtaza B, Shah N, Mubeen M, Ahmad S, Zakir A, Schotting R. 2019. Kinetic and equilibrium studies for cadmium biosorption from contaminated water using Cassia fistula biomass. Int J Environ Sci Technol. 16:3099–3108.
  • Imran M, Anwar K, Akram M, Shah GM, Ahmad I, Samad Shah N, Khan ZUH, Rashid MI, Akhtar MN, Ahmad S, et al. 2019. Biosorption of Pb (II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies. Int J Phytoremediation. 21(8):777–789. doi:10.1080/15226514.2019.1566880.
  • Imran M, Iqbal MM, Iqbal J, Shah NS, Khan ZUH, Murtaza B, Amjad M, Ali S, Rizwan M. 2021. Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: modeling, thermodynamics and reusability. J Hazard Mater. 401:123338. doi:10.1016/j.jhazmat.2020.123338.
  • Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, Ali S, Murtaza B, Naeem MA, Rizwan M. 2020. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr (VI) from contaminated water: a batch and column scale study. Environ Poll. 261:114231. doi:10.1016/j.envpol.2020.114231.
  • Iqbal J, Shah NS, Sayed M, Imran M, Muhammad N, Howari FM, Alkhoori SA, Khan JA, Haq Khan ZU, Bhatnagar A, et al. 2019. Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. J Clean Prod. 235:875–886. doi:10.1016/j.jclepro.2019.06.316.
  • Iqbal MM, Imran M, Hussain T, Naeem MA, Al-Kahtani AA, Shah GM, Ahmad S, Farooq A, Rizwan M, Majeed A, et al. 2021. Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: modeling, reusability and stability. J Saudi Chem Soc. 25(2):101176. doi:10.1016/j.jscs.2020.101176.
  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. 2017. The genome of Chenopodium quinoa. Nature. 542(7641):307–312. doi:10.1038/nature21370.
  • Khan ZUH, Khan A, Shah NS, Din IU, Salam MA, Iqbal J, Muhammad N, Imran M, Ali M, Sayed M, et al. 2021. Photocatalytic and biomedical investigation of green synthesized NiONPs: toxicities and degradation pathways of Congo red dye. Surf Interfaces. 23:100944. doi:10.1016/j.surfin.2021.100944.
  • Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, Tahir K, Safi SZ, Khan FU, Imran M, et al. 2019. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J Photochem Photobiol B. 192:147–157. doi:10.1016/j.jphotobiol.2019.01.013.
  • Khalifa EB, Rzig B, Chakroun R, Nouagui H, Hamrouni B. 2019. Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemom Intell Lab Syst. 189:18–26. doi:10.1016/j.chemolab.2019.03.014.
  • Kumar A, Thakur A, Panesar PS. 2019. Extraction of hexavalent chromium by environmentally benign green emulsion liquid membrane using tridodecyamine as an extractant. J Ind Eng Chem. 70:394–401. doi:10.1016/j.jiec.2018.11.002.
  • Kumar S, Narayanasamy S, Venkatesh RP. 2019. Removal of Cr (VI) from synthetic solutions using water caltrop shell as a low-cost biosorbent. Sep Sci Technol. 54(17):2783–2799. doi:10.1080/01496395.2018.1560333.
  • Kumar A, Patra C, Kumar S, Narayanasamy S. 2022. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res. 206:112604. doi:10.1016/j.envres.2021.112604.
  • Li K, Li P, Cai J, Xiao S, Yang H, Li A. 2016. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere. 154:310–318. doi:10.1016/j.chemosphere.2016.03.100.
  • Liu F, Yu J, Tu G, Qu L, Xiao J, Liu Y, Wang L, Lei J, Zhang J. 2017. Carbon nitride coupled Ti-SBA15 catalyst for visible-light-driven photocatalytic reduction of Cr (VI) and the synergistic oxidation of phenol. Appl Cataly B Environ. 201:1–11. doi:10.1016/j.apcatb.2016.08.001.
  • Liu W, Ni J, Yin X. 2014. Synergy of photocatalysis and adsorption for simultaneous removal of Cr (VI) and Cr (III) with TiO2 and titanate nanotubes. Water Res. 53:12–25. doi:10.1016/j.watres.2013.12.043.
  • Lucaci A-R, Bulgariu D, Bulgariu L. 2021. In situ functionalization of iron oxide particles with alginate: a promising biosorbent for retention of metal ions. Polymers. 13(20):3554. doi:10.3390/polym13203554.
  • Lyu H, Tang J, Huang Y, Gai L, Zeng EY, Liber K, Gong Y. 2017. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J. 322:516–524. doi:10.1016/j.cej.2017.04.058.
  • Ma H, Yang J, Gao X, Liu Z, Liu X, Xu Z. 2019. Removal of chromium (VI) from water by porous carbon derived from corn straw: influencing factors, regeneration and mechanism. J Hazard Mater. 369:550–560. doi:10.1016/j.jhazmat.2019.02.063.
  • Maitlo HA, Kim K-H, Kumar V, Kim S, Park J-W. 2019. Nanomaterials-based treatment options for chromium in aqueous environments. Environ Int. 130: 104748.
  • Mishra A, Gupta B, Kumar N, Singh R, Varma A, Thakur IS. 2020. Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr (VI) by Zhihengliuella sp. ISTPL4. Bioresour Technol. 307:123262. doi:10.1016/j.biortech.2020.123262.
  • Mor S, Ravindra K, Bishnoi N. 2007. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresour Technol. 98(4):954–957. doi:10.1016/j.biortech.2006.03.018.
  • Murtaza B, Shah NS, Sayed M, Khan JA, Imran M, Shahid M, Khan ZUH, Ghani A, Murtaza G, Muhammad N, et al. 2019. Synergistic effects of bismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution. Sci Total Environ. 669:333–341. doi:10.1016/j.scitotenv.2019.03.062.
  • Naeem MA, Imran M, Amjad M, Abbas G, Tahir M, Murtaza B, Zakir A, Shahid M, Bulgariu L, Ahmad I. 2019. Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water. 11(7):1438. doi:10.3390/w11071438.
  • Naeem MA, Shabbir A, Amjad M, Abbas G, Imran M, Murtaza B, Tahir M, Ahmad A. 2020. Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicol Environ Saf. 191:110218. doi:10.1016/j.ecoenv.2020.110218.
  • Naushad M, ALOthman Z, Awual M, Alam MM, Eldesoky G. 2015. Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti (IV) iodovanadate cation exchanger. Ionics. 21(8):2237–2245. doi:10.1007/s11581-015-1401-7.
  • Nithya K, Sathish A, Kumar PS. 2020. Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent. J Water Process Eng. 33:101069. doi:10.1016/j.jwpe.2019.101069.
  • Ogata F, Nagai N, Itami R, Nakamura T, Kawasaki N. 2020. Potential of virgin and calcined wheat bran biomass for the removal of chromium (VI) ion from a synthetic aqueous solution. J Environ Chem Eng. 8(2):103710. doi:10.1016/j.jece.2020.103710.
  • Ou J-H, Sheu Y-T, Tsang DCW, Sun Y-J, Kao C-M. 2020. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere. 256:127158. doi:10.1016/j.chemosphere.2020.127158.
  • Patra C, Medisetti RMN, Pakshirajan K, Narayanasamy S. 2019. Assessment of raw, acid-modified and chelated biomass for sequestration of hexavalent chromium from aqueous solution using Sterculia villosa Roxb. shells. Environ Sci Pollut Res Int. 26(23):23625–23637. doi:10.1007/s11356-019-05582-4.
  • Patra C, Shahnaz T, Subbiah S, Narayanasamy S. 2020. Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater. Environ Sci Pollut Res Int. 27(13):14836–14851. doi:10.1007/s11356-020-07979-y.
  • Pradhan D, Sukla LB, Mishra BB, Devi N. 2019. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod. 209:617–629. doi:10.1016/j.jclepro.2018.10.288.
  • Ruiz K, Biondi S, Martínez E, Orsini F, Antognoni F, Jacobsen S-E. 2016. Quinoa–a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst. 150(2):357–371. doi:10.1080/11263504.2015.1027317.
  • Shabbir A, Saqib M, Murtaza G, Abbas G, Imran M, Rizwan M, Naeem MA, Ali S, Javeed HMR. 2021. Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions by modulating ionic and oxidative stress responses. Environ Pollut. 287:117348. doi:10.1016/j.envpol.2021.117348.
  • Shah G, Imran M, Bakhat H, Hammad H, Ahmad I, Rabbani F, Khan Z. 2019. Kinetics and equilibrium study of lead bio-sorption from contaminated water by compost and biogas residues. Int J Environ Sci Technol. 16(7):3839–3850. doi:10.1007/s13762-018-1865-x.
  • Shah NS, Khan JA, Sayed M, Khan ZUH, Iqbal J, Imran M, Murtaza B, Zakir A, Polychronopoulou K. 2020. Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: a semi-pilot scale study. J Clean Prod. 246:119032. doi:10.1016/j.jclepro.2019.119032.
  • Shah GM, Imran M, Aiman U, Iqbal MM, Akram M, Javeed HMR, Waqar A, Rabbani F. 2022. Efficient sequestration of lead from aqueous systems by peanut shells and compost: evidence from fixed bed column and batch scale studies. PeerJ Physical Chemistry. 4, e21.
  • Shafiq M, Alazba A, Amin M. 2018. Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. JSM. 47(1):35–49. doi:10.17576/jsm-2018-4701-05.
  • Shakya A, Agarwal T. 2019. Removal of Cr (VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment. J Mol Liq. 293:111497. doi:10.1016/j.molliq.2019.111497.
  • Shamsollahi Z, Partovinia A. 2019. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: a critical review. J Environ Manage. 246:314–323. doi:10.1016/j.jenvman.2019.05.145.
  • Sharma M, Joshi M, Nigam S, Shree S, Avasthi DK, Adelung R, Srivastava SK, Mishra YK. 2019. ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem Eng J. 358:540–551. doi:10.1016/j.cej.2018.10.031.
  • Sharma PK, Ayub S, Tripathi CN. 2016. Isotherms describing physical adsorption of Cr (VI) from aqueous solution using various agricultural wastes as adsorbents. Cogent Eng. 3(1):1186857. doi:10.1080/23311916.2016.1186857.
  • Sharma G, Naushad M. 2020. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling. J Mol Liq. 310:113025. doi:10.1016/j.molliq.2020.113025.
  • Su M, Fang Y, Li B, Yin W, Gu J, Liang H, Li P, Wu J. 2019. Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method. Sci Total Environ. 647:47–56. doi:10.1016/j.scitotenv.2018.07.372.
  • Suganya E, Saranya N, Sivaprakasam S, Varghese LA, Narayanasamy S. 2020. Experimentation on raw and phosphoric acid activated Eucalyptus camadulensis seeds as novel biosorbents for hexavalent chromium removal from simulated and electroplating effluents. Environ Technol Innov. 19:100977. doi:10.1016/j.eti.2020.100977.
  • Sugashini S, Begum KMS. 2013. Optimization using central composite design (CCD) for the biosorption of Cr (VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Techn Environ Policy. 15(2):293–302. doi:10.1007/s10098-012-0512-3.
  • Tariq MA, Nadeem M, Iqbal MM, Imran M, Siddique MH, Iqbal Z, Amjad M, Rizwan M, Ali S. 2020. Effective sequestration of Cr (VI) from wastewater using nanocomposite of ZnO with cotton stalks biochar: modeling, kinetics, and reusability. Environ Sci Pollut Res Int. 27(27):33821–33834. doi:10.1007/s11356-020-09481-x.
  • Vigneshwaran S, Sirajudheen P, Karthikeyan P, Meenakshi S. 2021. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes. Surf Interfaces. 23:100920. doi:10.1016/j.surfin.2020.100920.
  • Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT. 2019. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res. 26(28):28481–28489. doi:10.1007/s11356-018-3208-3.
  • Wang C-C, Du X-D, Li J, Guo X-X, Wang P, Zhang JJ. 2016. Photocatalytic Cr (VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Enviro. 193:198–216. doi:10.1016/j.apcatb.2016.04.030.
  • Wang H, Zhang M, Li H. 2019. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil. IJERPH. 16(22):4430. doi:10.3390/ijerph16224430.
  • Xie W, Zhang M, Liu D, Lei W, Sun L, Wang X. 2017. Photocatalytic TiO2/porous BNNSs composites for simultaneous LR2B and Cr (VI) removal in wool dyeing bath. J Photochem Photobiol A Chem. 333:165–173. doi:10.1016/j.jphotochem.2016.10.024.
  • Yi G, Xing B, Zeng H, Wang X, Zhang C, Cao J, Chen L. 2017. One-step synthesis of hierarchical micro-mesoporous SiO2/reduced graphene oxide nanocomposites for adsorption of aqueous Cr (VI). J Nanomater. 2017:1–10. doi:10.1155/2017/6286549.
  • Yi Y, Lv J, Liu Y, Wu G. 2017. Synthesis and application of modified litchi peel for removal of hexavalent chromium from aqueous solutions. J Mol Liq. 225:28–33. doi:10.1016/j.molliq.2016.10.140.
  • Zeng H, Zeng H, Zhang H, Shahab A, Zhang K, Lu Y, Nabi I, Naseem F, Ullah H. 2021. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J Clean Prod. 286:124964.
  • Zhang D, Xu W, Cai J, Cheng S-Y, Ding W-P. 2020. Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions. Int J Biol Macromol. 149:459–466. doi:10.1016/j.ijbiomac.2020.01.199.
  • Zhao R, Li X, Li Y, Li Y, Sun B, Zhang N, Chao S, Wang C. 2017. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium (VI) adsorbents for water purification. J Colloid Interface Sci. 505:1018–1030. doi:10.1016/j.jcis.2017.06.094.
  • Zhu K, Duan Y, Wang F, Gao P, Jia H, Ma C, Wang C. 2017. Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr (VI) and Sb (V) and positive effects of Cr (VI) on Sb (V) adsorption. Chem Eng J. 311:236–246. doi:10.1016/j.cej.2016.11.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.