265
Views
1
CrossRef citations to date
0
Altmetric
Review

Employing algal biomass for fabrication of biofuels subsequent to phytoremediation

, , , , , , , , & show all

References

  • Adams JM, Gallagher JA, Donnison IS. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol. 21(5):569–574. doi:10.1007/s10811-008-9384-7.
  • Adeli M, Yamini Y, Faraji M. 2017. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arabian J Chem. 10:S514–S521. doi:10.1016/j.arabjc.2012.10.012.
  • Afkar E, Ababna H, Fathi AA. 2010. Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci. 6(3):230–237. doi:10.3844/ajessp.2010.230.237.
  • Alzate M, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI. 2014. Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J. 243:405–410. doi:10.1016/j.cej.2013.07.076.
  • Amamou S, Sambusiti C, Monlau F, Dubreucq E, Barakat A. 2018. Mechano-enzymatic deconstruction with a new enzymatic cocktail to enhance enzymatic hydrolysis and bioethanol fermentation of two macroalgae species. Molecules. 23(1):174. doi:10.3390/molecules23010174.
  • Anantharaj K, Govindasamy C, Natanamurugaraj G, Jeyachandran S. 2011. Effect of heavy metals on marine diatom Amphora coffeaeformis (Agardh. Kutz). Glob J Environ Res. 5(3):112–117.
  • Arun J, Gopinath KP, SundarRajan P, Malolan R, Adithya S, Jayaraman RS, Ajay PS. 2020. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: solid residue as catalyst for hydrogen production. Bioresour Technol. 310:123443. doi:10.1016/j.biortech.2020.123443.
  • Ashokkumar V, Salim MR, Salam Z, Sivakumar P, Chong CT, Elumalai S, Suresh V, Ani FN. 2017. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica. Energy Convers Manage. 135:351–361. doi:10.1016/j.enconman.2016.12.054.
  • Bahaa S, Al-Baldawi I, Rasheed S, Abdullah SRS. 2019. Biosorption of heavy metals from synthetic wastewater by using macro algae collected from Iraqi Marshlands. J Ecol Eng. 20(11):18–22. doi:10.12911/22998993/113415.
  • Behl K, Jaiswal P, Nigam S, Prasanna R, Abraham G, Singh P. 2022. Treatment of textile waste effluents using microalgae: a suitable approach for wastewater remediation and lipid production. In: Micro-algae: next-generation feedstock for biorefineries. ed. P. Verma. p. 103–137. Singapore: Springer.
  • Behl K, SeshaCharan P, Joshi M, Sharma M, Mathur A, Kareya MS, Jutur PP, Bhatnagar A, Nigam S. 2020. Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresour Technol. 304:122993.
  • Bhatia SK, Bhatia RK, Jeon J-M, Kumar G, Yang Y-H. 2019. Carbon dioxide capture and bioenergy production using biological system–a review. Renew Sustain Energy Rev. 110:143–158. doi:10.1016/j.rser.2019.04.070.
  • Bhatia SK, Bhatia RK, Yang Y-H. 2017. An overview of microdiesel—a sustainable future source of renewable energy. Renew Sustain Energy Rev. 79:1078–1090. doi:10.1016/j.rser.2017.05.138.
  • Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo S-O, et al. 2021. Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ. 751:141599.
  • Binda G, Spanu D, Bettinetti R, Magagnin L, Pozzi A, Dossi C. 2020. Comprehensive comparison of microalgae-derived biochar from different feedstocks: a prospective study for future environmental applications. Algal Res. 52:102103. doi:10.1016/j.algal.2020.102103.
  • Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol. 138:22–29.
  • Caputo G, Dispenza M, Rubio P, Scargiali F, Marotta G, Brucato A. 2016. Supercritical water gasification of microalgae and their constituents in a continuous reactor. J Supercrit Fluids. 118:163–170. doi:10.1016/j.supflu.2016.08.007.
  • Castro YA, Ellis JT, Miller CD, Sims RC. 2015. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy. 140:14–19. doi:10.1016/j.apenergy.2014.11.045.
  • Chauhan DS, Goswami G, Dineshbabu G, Palabhanvi B, Das D. 2020. Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Conv Bioref. 10(2):339–349. doi:10.1007/s13399-019-00432-2.
  • Chekroun KB, Baghour M. 2013. The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci. 4(6):873–880.
  • Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S. 2013. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 78:1–10. doi:10.1016/j.bej.2013.03.006.
  • Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY. 2018. The potential of microalgae in biodiesel production. Renew Sustain Energy Rev. 90:336–346. doi:10.1016/j.rser.2018.03.073.
  • Chen W-H, Lin B-J, Huang MY, Chang JS. 2015. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 184:314–327.
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv. 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Cho S, Park S, Seon J, Yu J, Lee T. 2013. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol. 143:330–336.
  • Cooney M, Young G, Nagle N. 2009. Extraction of bio‐oils from microalgae. Sep Purif Rev. 38(4):291–325. doi:10.1080/15422110903327919.
  • Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Change. 19(2):292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Costa J, Gonçalves P, Nobre A, Alves MM. 2012. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol. 114:320–326.
  • Craggs R, Park J, Heubeck S, Sutherland D. 2014. High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. N Z J Bot. 52(1):60–73. doi:10.1080/0028825X.2013.861855.
  • da Costa C. 2018. Bioelectricity production from microalgae-microbial fuel cell technology (MMFC). In: MATEC web of conferences. Vol. 156. EDP Sciences. p. 01017. Semarang. doi:10.1051/matecconf/201815601017.
  • Debiagi PEA, Trinchera M, Frassoldati A, Faravelli T, Vinu R, Ranzi E. 2017. Algae characterization and multistep pyrolysis mechanism. J Anal Appl Pyrolysis. 128:423–436. doi:10.1016/j.jaap.2017.08.007.
  • del Campo AG, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J. 2013. Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources. 242:638–645. doi:10.1016/j.jpowsour.2013.05.110.
  • Díaz-Rey M, Cortés-Reyes M, Herrera C, Larrubia M, Amadeo N, Laborde M, Alemany LJ. 2015. Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catal Today. 257:177–184. doi:10.1016/j.cattod.2014.04.035.
  • Dönmez G, Aksu Z. 2002. Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem. 38(5):751–762. doi:10.1016/S0032-9592(02)00204-2.
  • Dönmez GÇ, Aksu Z, Öztürk A, Kutsal T. 1999. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 34(9):885–892. doi:10.1016/S0032-9592(99)00005-9.
  • Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z. 2017. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol. 238:254–262.
  • Duan P-G, Li S-C, Jiao J-L, Wang F, Xu YP. 2018. Supercritical water gasification of microalgae over a two-component catalyst mixture. Sci Total Environ. 630:243–253. doi:10.1016/j.scitotenv.2018.02.226.
  • Rodrigo WS, Eder CS, Roberta de PM, Alexandra L, Marcelo M, Paulo AH, Zenilda LB. 2012. Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). Am J Plant Sci. Vol.3 No.8(2012). 1-4. doi:10.4236/ajps.2012.38129.
  • El Harchi M, Kachkach FF, El Mtili N. 2018. Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S Afr J Bot. 115:161–169. doi:10.1016/j.sajb.2018.01.021.
  • Fan L, Zhang H, Li J, Wang Y, Leng L, Li J, Yao Y, Lu Q, Yuan W, Zhou W. 2020. Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: a review. Algal Res. 47:101819. doi:10.1016/j.algal.2020.101819.
  • Fan X, Wang H, Guo R, Yang D, Zhang Y, Yuan X, Qiu Y, Yang Z, Zhao X. 2016. Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production. Algal Res. 16:240–244. doi:10.1016/j.algal.2016.03.025.
  • Fawzy MA, Issa AA. 2016. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana. Int J Phytoremediat. 18(4):321–328.
  • Ginzburg BZ. 1993. Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy. 3(2-3):249–252. doi:10.1016/0960-1481(93)90031-B.
  • Goh BHH, Ong HC, Cheah MY, Chen W-H, Yu KL, Mahlia TMI. 2019. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev. 107:59–74. doi:10.1016/j.rser.2019.02.012.
  • Gupta RB, Demirbas A. 2010. Gasoline, diesel, and ethanol biofuels from grasses and plants. Cambridge: Cambridge University Press.
  • Guschina IA, Harwood JL. 2013. Algal lipids and their metabolism. In Algae for biofuels and energy. Dordrecht: Springer. p. 17–36.
  • Harun R, Danquah MK, Forde GM. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 85(2):199–203.
  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y. 1998. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today. 45(1-4):399–404. doi:10.1016/S0920-5861(98)00275-2.
  • Hoffmann JP. 1998. Wastewater treatment with suspended and nonsuspended algae. J Phycol. 34(5):757–763. doi:10.1046/j.1529-8817.1998.340757.x.
  • Horn SJ, Aasen IM, Østgaard K. 2000. Ethanol production from seaweed extract. J Ind Microbiol Biotechnol. 25(5):249–254. doi:10.1038/sj.jim.7000065.
  • Hossain N, Mahlia T, Saidur R. 2019. Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels. 12(1):1–16. doi:10.1186/s13068-019-1465-0.
  • Hou Q, Cheng J, Nie C, Pei H, Jiang L, Zhang L, Yang Z. 2017. Features of Golenkinia sp. and microbial fuel cells used for the treatment of anaerobically digested effluent from kitchen waste at different dilutions. Bioresour Technol. 240:130–136. doi:10.1016/j.biortech.2017.02.092.
  • Hu Q. 2004. Environmental effects on cell composition. Vol. 1. Oxford (UK): Blackwell Science Ltd.
  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4):621–639.
  • Huo S, Liu J, Zhu F, Basheer S, Necas D, Zhang R, Li K, Chen D, Cheng P, Cobb K. 2020. Post treatment of swine anaerobic effluent by weak electric field following intermittent vacuum assisted adjustment of N: P ratio for oil-rich filamentous microalgae production. Bioresour Technol. 314:123718. doi:10.1016/j.biortech.2020.123718.
  • Ingle K, Vitkin E, Robin A, Yakhini Z, Mishori D, Golberg A. 2018. Macroalgae biorefinery from Kappaphycus alvarezii: conversion modeling and performance prediction for India and Philippines as examples. Bioenerg Res. 11(1):22–32. doi:10.1007/s12155-017-9874-z.
  • Issa AA, Fawzy MA, El-Deeb B. 2016. Uptake of cadmium by the green alga Scenedesmus quadricauda in the presence of selenium nanoparticles. Int J NanoChem. 2(2):47–52. doi:10.18576/ijnc/020203.
  • Jacinto MLJ, David CPC, Perez TR, De Jesus BR. 2009. Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater. Ecol Eng. 35(5):856–860. doi:10.1016/j.ecoleng.2008.12.023.
  • Jalilian N, Najafpour GD, Khajouei M. 2020. Macro and micro algae in pollution control and biofuel production – a review. ChemBioEng Reviews. 7(1):18–33. doi:10.1002/cben.201900014.
  • Juang D, Lee C, Hsueh SC. 2012. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresour Technol. 123:23–29.
  • Juneja A, Ceballos RM, Murthy GS. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 6(9):4607–4638. doi:10.3390/en6094607.
  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C. 2017. Microalgal hydrogen production–a review. Bioresour Technol. 243:1194–1206.
  • Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol. 153:47–54.
  • Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol. 102(16):7466–7469.
  • Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A. 2015. Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Adv. 5(21):16223–16229. doi:10.1039/C4RA14880K.
  • Kumar A, Acharya P, Jaiman V. 2022. Third-generation hybrid technology for algal biomass production, wastewater treatment, and greenhouse gas mitigation. In: Innovations in environmental biotechnology. Singapore: Springer. p. 227–263.
  • Lawton RJ, de Nys R, Magnusson ME, Paul NA. 2015. The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater macroalga. Algal Res. 12:213–220. doi:10.1016/j.algal.2015.09.001.
  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z. 2006. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere. 62(4):565–572.
  • Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P. 2016. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol. 214:144–149. doi:10.1016/j.biortech.2016.04.090.
  • Liu Z-Y, Wang G-C, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol. 99(11):4717–4722.
  • Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, Rákhely G. 2017. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 176:378–388. doi:10.1016/j.chemosphere.2017.02.099.
  • Maione TE, Gibbs M. 1986. Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii. Plant Physiol. 80(2):360–363.
  • Manchanda T, Tyagi R, Nalla V, Chahar S, Sharma DK. 2018. Power generation by algal microbial fuel cell along with simultaneous treatment of sugar industry wastewater. J Bioprocess Biotech. 08(03):323. doi:10.4172/2155-9821.1000323.
  • Markou G, Angelidaki I, Georgakakis D. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol. 96(3):631–645. doi:10.1007/s00253-012-4398-0.
  • Markou G, Chatzipavlidis I, Georgakakis D. 2012. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenerg Res. 5(4):915–925. doi:10.1007/s12155-012-9205-3.
  • Mehrabadi A, Craggs R, Farid MM. 2016. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresour Technol. 221:222–233.
  • Miao X, Wu Q. 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol. 110(1):85–93.
  • Monteiro CM, Castro PM, Malcata FX. 2010. Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut. 208(1-4):17–27. doi:10.1007/s11270-009-0146-1.
  • Nagappan S, Kumar RR, Balaji JR, Singh S, Verma SK. 2019. Direct saponification of wet microalgae by methanolic potassium hydroxide using acetone as co-solvent. Bioresour Technol Rep. 5:351–354. doi:10.1016/j.biteb.2018.05.010.
  • Naina Mohamed S, Jayabalan T, Muthukumar K. 2019. Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cell. Energy Sources Part A. 1–9. doi:10.1080/15567036.2019.1666932.
  • Nguyen HT, Kakarla R, Min B. 2017. Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrogen Energy. 42(49):29433–29442. doi:10.1016/j.ijhydene.2017.10.011.
  • Norouzi O, Safari F, Jafarian S, Tavasoli A, Karimi A. 2017. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts. Energy Convers Manage. 141:63–71. doi:10.1016/j.enconman.2016.04.083.
  • Panda S, Mishra S, Akcil A, Kucuker MA. 2021. Microalgal potential for nutrient-energy-wastewater nexus: innovations, current trends and future directions. Energy Environ. 32(4):604–634. doi:10.1177/0958305X20955187.
  • Passos F, Hom-Diaz A, Blanquez P, Vicent T, Ferrer I. 2016. Improving biogas production from microalgae by enzymatic pretreatment. Bioresour Technol. 199:347–351.
  • Phwan CK, Ong HC, Chen W-H, Ling TC, Ng EP, Show PL. 2018. Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manage. 173:81–94. doi:10.1016/j.enconman.2018.07.054.
  • Priya A, Jalil A, Vadivel S, Dutta K, Rajendran S, Fujii M, Soto-Moscoso M. 2022. Heavy metal remediation from wastewater using microalgae: recent advances and future trends. Chemosphere. 305:135375. doi:10.1016/j.chemosphere.2022.135375.
  • Raheem A, Liu H, Ji G, Zhao M. 2019. Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Res. 42:101601. doi:10.1016/j.algal.2019.101601.
  • Rajhi H, Bardi A, Sadok S, Moussa M, Turki S. 2020. Phytoremediation of samples extracted from wastewater treatment plant and their socioeconomic impact. Water Sci Technol. 82(8):1653–1664. doi:10.2166/wst.2020.429.
  • Razon LF, Tan RR. 2011. Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy. 88(10):3507–3514. doi:10.1016/j.apenergy.2010.12.052.
  • Ren H-Y, Liu B-F, Kong F, Zhao L, Ren N. 2015. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res. 85:404–412. doi:10.1016/j.watres.2015.08.057.
  • Rincón-Pérez J, Razo-Flores E, Morales M, Alatriste-Mondragón F, Celis LB. 2020. Improving the biodegradability of Scenedesmus obtusiusculus by thermochemical pretreatment to produce hydrogen and methane. Bioenerg Res. 13(2):477–486. doi:10.1007/s12155-019-10067-w.
  • Romera E, González F, Ballester A, Blázquez M, Munoz JA. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 98(17):3344–3353.
  • Rosli SS, Amalina Kadir WN, Wong CY, Han FY, Lim JW, Lam MK, Yusup S, Kiatkittipong W, Kiatkittipong K, Usman A. 2020. Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew Sustain Energy Rev. 134:110306. doi:10.1016/j.rser.2020.110306.
  • Roy SS, Pal R. 2015. Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Paper presented at: Proceedings of the Zoological Society. 68: 1–8. doi:10.1007/s12595-013-0089-9.
  • Sabourin-Provost G, Hallenbeck PC. 2009. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol. 100(14):3513–3517.
  • Safari F, Norouzi O, Tavasoli A. 2016. Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresour Technol. 222:232–241.
  • Schnurr PJ, Allen DG. 2015. Factors affecting algae biofilm growth and lipid production: a review. Renew Sustain Energy Rev. 52:418–429. doi:10.1016/j.rser.2015.07.090.
  • Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–comparison of five pretreatment technologies. Bioresour Technol. 140:36–42.
  • Sharma KK, Schuhmann H, Schenk PM. 2012. High lipid induction in microalgae for biodiesel production. Energies. 5(5):1532–1553. doi:10.3390/en5051532.
  • Sheng PX, Ting YP, Chen JP. 2007. Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single-and multiple-metal systems. Ind Eng Chem Res. 46(8):2438–2444. doi:10.1021/ie0615786.
  • Shin WS, Kim YK. 2014. Biosorption characteristics of heavy metals (Ni2+, Zn2+, Cd2+, Pb2+) from aqueous solution by Hizikia fusiformis. Environ Earth Sci. 71(9):4107–4114. doi:10.1007/s12665-013-2799-8.
  • Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J. 2010. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy. 35(12):5406–5411. doi:10.1016/j.energy.2010.07.013.
  • Siqueira SF, Deprá MC, Zepka LQ, Jacob-Lopes E. 2018. Life cycle assessment (LCA) of third-generation biodiesel produced heterotrophically by. TOBIOTJ. 12(1):270–281. doi:10.2174/1874070701812010270.
  • Soliman R, Younis SE, Gendy NS, Mostafa SE, Temtamy S, Hashim AI. 2018. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. J Appl Microbiol. 125(2):422–440.
  • Suganya T, Renganathan S. 2012. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour Technol. 107:319–326.
  • Sztancs G, Juhasz L, Nagy BJ, Nemeth A, Selim A, Andre A, Toth AJ, Mizsey P, Fozer D. 2020. Co-hydrothermal gasification of Chlorella vulgaris and hydrochar: the effects of waste-to-solid biofuel production and blending concentration on biogas generation. Bioresour Technol. 302:122793. doi:10.1016/j.biortech.2020.122793.
  • Tamilarasan S, Sahadevan R. 2014. Ultrasonic assisted acid base transesterification of algal oil from marine macroalgae Caulerpa peltata: optimization and characterization studies. Fuel. 128:347–355. doi:10.1016/j.fuel.2014.03.037.
  • Torres EM, Hess D, McNeil BT, Guy T, Quinn JC. 2017. Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicol Environ Saf. 139:367–376. doi:10.1016/j.ecoenv.2017.01.034.
  • Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy C, Lali AM, Jha B. 2016. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep. 6(1):1–8. doi:10.1038/srep30728.
  • Vargas-Estrada L, Longoria A, Arenas E, Moreira J, Okoye PU, Bustos-Terrones Y, Sebastian PJ. 2021. A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. Bioenergy Res. 15: 1–16.
  • Vickers NJ. 2017. Animal communication: when i’m calling you, will you answer too? Curr Biol. 27(14):R713–R715. doi:10.1016/j.cub.2017.05.064.
  • Wang Y, Yao G, Jin F. 2014. Hydrothermal conversion of cellulose into organic acids with a CuO oxidant. In: Application of hydrothermal reactions to biomass conversion. ed. F. Jin. p. 31–59. Berlin: Springer.
  • Widyaningrum T, Prastowo I, Parahadi M, Prasetyo A. 2016. Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally β-glucosidase producing yeast Saccharomyces cereviceae JCM 3012. Biosci Biotech Res Asia. 13(3):1333–1340. doi:10.13005/bbra/2274.
  • Wiley PE, Campbell JE, McKuin B. 2011. Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res. 83(4):326–338.
  • Worku A, Sahu O. 2014. Reduction of heavy metal and hardness from ground water by algae. J Appl Environ Microbiol. 2(3):86–89.
  • Wu J, Alam MA, Pan Y, Huang D, Wang Z, Wang T. 2017. Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. J Taiwan Inst Chem Eng. 71:323–329. doi:10.1016/j.jtice.2016.12.039.
  • Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD. 2016. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae. Bioresour Technol. 205:118–125.
  • Xu Y, Ren Q, Zheng ZJ, He YL. 2017. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media. Appl Energy. 193:84–95. doi:10.1016/j.apenergy.2017.02.019.
  • Yanagisawa M, Kawai S, Murata K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered. 4(4):224–235. doi:10.4161/bioe.23396.
  • Yang J, Cao J, Xing G, Yuan H. 2015. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol. 175:537–544.
  • Yeon J-H, Lee S-E, Choi WY, Kang DH, Lee H-Y, Jung K-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol. 21(3):323–331.
  • Yew GY, Lee SY, Show PL, Tao Y, Law CL, Nguyen TTC, Chang JS. 2019. Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep. 7:100227. doi:10.1016/j.biteb.2019.100227.
  • You S, Ok YS, Chen SS, Tsang DC, Kwon EE, Lee J, Wang CH. 2017. A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresour Technol. 246:242–253.
  • Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P. 2011. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J Hazard Mater. 187(1-3):591–595. doi:10.1016/j.jhazmat.2011.01.042.
  • Yuan Y, Macquarrie DJ. 2015. Microwave assisted acid hydrolysis of brown seaweed Ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustainable Chem Eng. 3(7):1359–1365. doi:10.1021/acssuschemeng.5b00094.
  • Zabed H. 2019. Bioethanol production from high sugary corn genotypes by decreasing enzyme consumption. In: Social research methodology and new techniques in analysis, interpretation, and writing. ed. M. Rezaul Islam. IGI Global. p. 216–240. Pennsylvania: Hershey.
  • Zhang B, Chen J, Kandasamy S, He Z. 2020. Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending-operation parameter and biocrude chemistry investigation. Energy. 193:116645. doi:10.1016/j.energy.2019.116645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.