289
Views
1
CrossRef citations to date
0
Altmetric
Articles

Comparative zinc tolerance and phytoremediation potential of four biofuel plant species

, , , , &

References

  • Afonso TF, Demarco CF, Pieniz S, Camargo FA, Quadro MS, Andreazza R. 2019. Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, southern Brazil. Environ Sci Pollut Res Int. 26(23):24132–24142. doi:10.1007/s11356-019-05460-z.
  • Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V, Viswanathan K, Fatoba PO. 2019. Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Inno. 14:100325. doi:10.1016/j.eti.2019.100325.
  • Alireza H, Farhang M. 2011. Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. Afr J Agric Res. 6(5):1182–1187.
  • Alloway BJ. 2013. Heavy metals and metalloids as micronutrients for plants and animals. In: Heavy metals in soils. Dordrecht: Springer. p. 195–209.
  • Al-Sodany YM, Saleh MA, Arshad M, Abdel Khalik KN, Al-Bakre DA, Eid EM. 2021. Regression models to estimate accumulation capability of six metals by two macrophytes, Typha domingensis and Typha elephantina, grown in an arid climate in the mountainous region of Taif, Saudi Arabia. Sustainability. 14(1):1. doi:10.3390/su14010001.
  • Amin H, Ahmed Arain B, Abbasi S, Amin F, Jahangir TM, Soomro NUA. 2019. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Int J Phytoremediation. 21(4):352–363. doi:10.1080/15226514.2018.1524837.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K. 2019. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res Int. 26(9):8468–8484. doi:10.1007/s11356-019-04241-y.
  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 174:714–727. doi:10.1016/j.ecoenv.2019.02.068.
  • Awokunmi EE. 2016. The potential of Abelmoschus esculentus in EDTA-asssisted phytoextraction of heavy metals from soil of Bashiri Dumpsite, Ado Ekiti, Nigeria. Int J Environ Prot. 6:9–14.
  • Barbosa RH, Tabaldi LA, Miyazaki FR, Pilecco M, Kassab SO, Bigaton D. 2013. Foliar copper uptake by maize plants: effects on growth and yield. Cienc Rural. 43(9):1561–1568. doi:10.1590/S0103-84782013000900005.
  • Barhoumi A, Leroy G, Duponchel B, Gest J, Yang L, Waldhoff N, Guermazi S. 2015. Aluminum doped ZnO thin films deposited by direct current sputtering: structural and optical properties. Superlattices Microstructures. 82:483–498. doi:10.1016/j.spmi.2015.03.007.
  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Ruiz JM, Blasco B. 2014. Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environ Exp Bot. 107:98–104. doi:10.1016/j.envexpbot.2014.05.012.
  • Boi ME, Porceddu M, Cappai G, De Giudici G, Bacchetta G. 2020. Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, a metal-tolerant plant. Int J Environ Sci Technol. 17(4):1917–1928. doi:10.1007/s13762-019-02589-9.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. 2014. Remediation of heavy metal (loid) s contaminated soils-to mobilize or to immobilize? J Hazard Mater. 266:141–166. doi:10.1016/j.jhazmat.2013.12.018.
  • Ciura J, Poniedziałek M, Sękara A, Jędrszczyk E. 2005. The possibility of using crops as metal phytoremediants. Pol J Environ Stud. 14:17–22.
  • Connolly EL, Campbell N, Grotz N, Prichard CL, Guerinot ML. 2003. Overexpression of the FRO2 iron reductase confers tolerance to growth on low iron and uncovers post-transcriptional control. Plant Physiol. 133(3):1102–1110. doi:10.1104/pp.103.025122.
  • Dmuchowski W, Gozdowski D, Brągoszewska P, Baczewska AH, Suwara I. 2014. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol Eng. 71:32–35. doi:10.1016/j.ecoleng.2014.07.053.
  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM. 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ. 407(13):3972–3985. doi:10.1016/j.scitotenv.2008.07.025.
  • Elleuch J, Amor FB, Chaaben Z, Frikha F, Michaud P, Fendri I, Abdelkafi S. 2021. Zinc biosorption by Dunaliella sp. AL-1: Mechanism and effects on cell metabolism. Sci Total Environ. 773:145024. doi:10.1016/j.scitotenv.2021.145024.
  • Fanrong Z, Shafaqat A, Haitao Z, Younan O, Boyin Q, Feibo W, Guoping Z. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 159:84–91.
  • Farahat EA, Galal TM, Elawa OE, Hassan LM. 2017. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environ Monit Assess. 189(11):1–11. doi:10.1007/s10661-017-6259-x.
  • Faran M, Farooq M, Rehman A, Nawaz A, Saleem MK, Ali N, Siddique KH. 2019. High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant Soil. 437(1-2):195–213. doi:10.1007/s11104-019-03977-3.
  • Fitz WJ, Wenzel WW. 2002. Arsenic transformation in the soil rhizosphere plant system, fundamentals and potential application of phytoremediation. J Biotechnol. 99(3):259–278. doi:10.1016/s0168-1656(02)00218-3.
  • Gajewska E, SkŁodowska M. 2010. Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf. 73(5):996–1003. doi:10.1016/j.ecoenv.2010.02.013.
  • Galal TM, Eid EM, Dakhil MA, Hassan L. 2018. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation. 20(5):440–447. doi:10.1080/15226514.2017.1365343.
  • Galal TM, Shedeed ZA, Gharib FA, Al-Yasi HM, Mansour KH. 2021. The role of Cyperus alopecuroides Rottb. sedge in monitoring water pollution in contaminated wetlands in Egypt: a phytoremediation approach. Environ Sci Pollut Res Int. 28(18):23005–23016. doi:10.1007/s11356-020-12308-4.
  • Gambrell RP. 1994. Trace and toxic metals in wetlands - a review. J Environ Qual. 23(5):883–891. doi:10.2134/jeq1994.00472425002300050005x.
  • Ghosh M, Singh SP. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ. 6(4):18.
  • Gomes MP, Duarte DM, Carneiro MMLC, Barreto LC, Carvalho M, Soares AM, Guilherme LRG, Garcia QS. 2013. Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiol Biochem. 67:1–6. doi:10.1016/j.plaphy.2013.02.018.
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C. 2018. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol. 253:64–71. doi:10.1016/j.biortech.2018.01.018.
  • Granick S, Mauzerall D. 1961. The metabolism of heme and chlorophyll. In Metabolic pathways. New York: Academic Press. p. 525–616.
  • Grassi C, Cecchi S, Baldi A, Zanchi CA, Orlandini S, Pardini A, Napoli M. 2020. Crop suitability assessment in remediation of Zn contaminated soil. Chemosphere. 246:125706. doi:10.1016/j.chemosphere.2019.125706.
  • Guarino F, Ruiz KB, Castiglione S, Cicatelli A, Biondi S. 2020. The combined effect of Cr (III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd). Ecotoxicol Environ Saf. 193:110345. doi:10.1016/j.ecoenv.2020.110345.
  • Ha GS, Saha S, Basak B, Kurade MB, Kim GU, Ji MK, Ahn Y, Salama ES, Chang SW, Jeon BH. 2021. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels. Bioresour Technol. 340:125651. doi:10.1016/j.biortech.2021.125651.
  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL. 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano. 7(2):1415–1423. doi:10.1021/nn305196q.
  • Hu B, Shao S, Ni H, Fu Z, Hu L, Zhou Y, Min X, She S, Chen S, Huang M, et al. 2020. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ Pollut. 266(Pt 3):114961. doi:10.1016/j.envpol.2020.114961.
  • Jackson MJ. 1989. Physiology of zinc: general aspects. In Zinc in human biology (pp. 1–14). Springer, London.
  • Kabata-Pendias A. 1999. Biogeochemia Pierwiastkow Sladowych. Warszawa: PWN.
  • Kabata-Pendias A. 2001. Trace metals in soils - a current issue in Poland. Acta Univ Wratislaviensis. Prace Botaniczne. 79:13–20.
  • Krupnova TG, Rakova OV, Gavrilkina SV, Antoshkina EG, Baranov EO, Dmitrieva AP, Somova AV. 2021. Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia. Environ Geochem Health. 43(7):2551–2570. doi:10.1007/s10653-020-00605-3.
  • Landner L, Reuther R. 2005. Speciation, mobility and bioavailability of metals in the environment. Netherlands: Springer. p. 139–274.
  • Latare AM, Singh SK. 2013. Effect of sewage sludge and fertilizers application on accumulation of heavy metals and yield of rice (Oryza sativa L.) in an Inceptisol of Varanasi. J Indian Soc Soil Sci. 61(3):219–225.
  • Leitenmaier B, Küpper H. 2013. Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci. 4:374. doi:10.3389/fpls.2013.00374.
  • Li C, Xie X, Liu H, Wang P, Deng C, Lu B, Zhou J, Liang S. 2022. Integrated ‘all-in-one’strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl Sci Rev. 9(3):177.
  • Li F, Wang Z, Dai J, Li Q, Wang X, Xue C, Liu H, He G. 2015. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biol Fertil Soils. 51(7):769–780. doi:10.1007/s00374-015-1023-2.
  • Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M. 2021a. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca Catechu L. Front Plant Sci. 12:710093.
  • Li QY, Wei MH, He PF, Liu K. 2021b. Characteristics of soil heavy metal pollution and ecological risk assessment of Jinzhou City. Geol Resour. 30(4):465–472.
  • Li X, Yang Y, Zhang J, Jia L, Li Q, Zhang T, Qiao K, Ma S. 2012. Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicol Environ Saf. 86:198–203. doi:10.1016/j.ecoenv.2012.09.021.
  • Lindsay WL, Norvell W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M, Zhou Y. 2020. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater. 382:121040. doi:10.1016/j.jhazmat.2019.121040.
  • Liu X, Wang F, Shi Z, Tong R, Shi X. 2015. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J Nanoparticle Res. 17(4):1–11.
  • Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F. 2010. Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol. 12:119–124.
  • Madhava Rao KV, Sresty TVS. 2000. Antioxidative parameters in seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Sci. 157:13–128.
  • Mahalakshmi G, Vijayarengan P. 2003. Effects of zinc on germinating seeds of three plants species. Nature Environ Pollut Tech. 2:117–119.
  • Mahmood S, Hussain A, Saeed Z, Athar M. 2005. Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int J Environ Sci Technol. 2(3):269–274. doi:10.1007/BF03325886.
  • Masindi V, Muedi KL. 2018. Environmental contamination by heavy metals. Heavy Metals. 10:115–132.
  • McCauley A, Jones C, Jacobsen J. 2009. Soil pH and organic matter. Nutr Manag Module. 8(2):1–12.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi:10.1289/ehp.10608.
  • Michael PI, Krishnaswamy M. 2011. The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ Exp Bot. 74:171–177. doi:10.1016/j.envexpbot.2011.05.016.
  • Miretzky P, Saralegui A, Cirelli AF. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57(8):997–1005. doi:10.1016/j.chemosphere.2004.07.024.
  • Mitra M, Nguyen KMAK, Box TW, Berry TL, Fujita M. 2021. Isolation and characterization of a heavy metal and antibiotic tolerant novel bacterial strain from a contaminated culture plate of Chlamydomonas reinhardtii, a green micro-alga. F1000Res. 10:533. doi:10.12688/f1000research.53779.2.
  • Monni S, Salemaa M, Millar N. 2000. The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut. 109(2):221–229. doi:10.1016/S0269-7491(99)00264-X.
  • Monni S, Uhlig C, Hansen E, Magel E. 2001. Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut. 112(2):121–129. doi:10.1016/s0269-7491(00)00125-1.
  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh P, Mondal TK. 2013. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol Plant. 57(3):474–480. doi:10.1007/s10535-012-0300-2.
  • Napoli M, Cecchi S, Grassi C, Baldi A, Zanchi CA, Orlandini S. 2019. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere. 219:122–129. doi:10.1016/j.chemosphere.2018.12.017.
  • Nirola R, Megharaj M, Palanisami T, Aryal R, Venkateswarlu K, Naidu R. 2015. Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine - a quest for phytostabilization. J Sustain Min. 14(3):115–123. doi:10.1016/j.jsm.2015.11.001.
  • Noulas C, Tziouvalekas M, Karyotis T. 2018. Zinc in soils, water and food crops. J Trace Elem Med Biol. 49:252–260. doi:10.1016/j.jtemb.2018.02.009.
  • Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y. 2013. Development of profitable phytoremediation of contaminated soils with biofuel crops. JEP. 04(04):58–64. doi:10.4236/jep.2013.44A008.
  • Olaniran AO, Balgobind A, Pillay B. 2013. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci. 14(5):10197–10228. doi:10.3390/ijms140510197.
  • Öncel I, Keleş Y, Üstün AS. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut. 107(3):315–320. doi:10.1016/s0269-7491(99)00177-3.
  • Ortiz FJG. 2020. Techno-economic assessment of supercritical processes for biofuel production. J Supercrit Fluids. 160:104788.
  • Pandey G, Madhuri S. 2014. Heavy metals causing toxicity in animals and fishes. Res J Anim Vet and Fishery Sci. 2(2):17–23.
  • Rachit K, Verma KS, Meena T, Yashveer V, Shreya H. 2016. Phytoextraction and bioconcentration of heavy metals by Spinacia oleracea grown in paper mill effluent irrigated soil. Nat Environ Pollut Technol. 15:817–824.
  • Reichman SM. 2002. The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Melbourne: Australian Minerals and Energy Environment Foundation. p. 7.
  • Rohan D, Mayank V, João P, Paul MS. 2013. Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: implications for phytoremediation. Soil Sediment Contam Int J. 22(1):1–20. doi:10.1080/15320383.2012.697936.
  • Sagardoy RUTH, Morales FERM, López Millán AF, Abadía ANUNCIACIÓN, Abadía JAVIER. ‐ 2009. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol (Stuttg). 11(3):339–350. doi:10.1111/j.1438-8677.2008.00153.x.
  • Sandouqa A, Al-Hamamre Z. 2019. Energy analysis of biodiesel production from jojoba seed oil. Renew Energy. 130:831–842. doi:10.1016/j.renene.2018.07.015.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Senge MO, Sergeeva NN, Hale KJ. 2021. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev. 50(7):4730–4789. doi:10.1039/c7cs00719a.
  • Seregin TV, Ivanov VB. 2001. Physiological aspects of toxin action of cadmium and lead on high plants. Plant Physiol. 48:606–630.
  • Shehata HS, Galal TM. 2020. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J Consum Prot Food Saf. 15(3):205–217. doi:10.1007/s00003-020-01284-z.
  • Shi G, Cai Q. 2010. Zinc tolerance and accumulation in eight oil crops. J Plant Nutr. 33(7):982–997. doi:10.1080/01904161003728669.
  • Shivhare L, Sharma S. 2012. Effect of toxic heavy metal contaminated soil on an ornamental plant Georgina wild (Dahlia). J Environ Anal Toxicol. 02(07):1–3. doi:10.4172/2161-0525.1000156.
  • Sidhu GPS. 2016. Physiological, biochemical and molecular mechanisms of zinc uptake, toxicity and tolerance in plants. J Global Biosci. 5(9):4603–4633.
  • Sidhu GPS, Bal A, Singh HP, Batish DR, Kohli RK. 2020. Insights into the tolerance and phytoremediation potential of Coronopus didymus L.(Sm) grown under zinc stress. Chemosphere. 244:125350. doi:10.1016/j.chemosphere.2019.125350.
  • Singh D, Nath K, Sharma YK. 2007. Response of wheat seed germination and seedling growth under copper stress. J Environ Biol. 28(2 Suppl):409–414.
  • Srinivasan M, Sahi SV, Paulo JCF, Venkatachalam P. 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 55:54.
  • Sun Y-b, Zhou Q-x, An J, Liu W-t, Liu R. 2009. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial waste water with the hyperaccumulator plant (Sedum alfredii Hence). Geoderma. 150(1–2):106–112. doi:10.1016/j.geoderma.2009.01.016.
  • Sun YB, Zhou QX, Wang L, Liu WT. 2009. The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanium nigrum L). Bull Environ Contam Toxicol. 82(3):348–353. doi:10.1007/s00128-008-9592-5.
  • Talebi S, Nabavi KSM, Sohani DAL. 2014. The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale Wittmack). Intl J Farm Alli Sci. 3:1080–1087.
  • Tong YP, Kneer R, Zhu YG. 2004. Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends Plant Sci. 9(1):7–9. doi:10.1016/j.tplants.2003.11.009.
  • Tóth G, Hermann T, Da Silva MR, Montanarella LJEI. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. 88:299–309. Environ Int doi:10.1016/j.envint.2015.12.017.
  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 10(3):268–292.
  • Wang WX. 2016. Bioaccumulation and biomonitoring. In Marine ecotoxicology. New York: Academic Press. p. 99–119.
  • Wilkins DA. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80(3):623–633. doi:10.1111/j.1469-8137.1978.tb01595.x.
  • Wodala B, Eitel G, Gyula TN, Ördög A, Horváth F. 2012. Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. Photosynt. 50(3):380–386. doi:10.1007/s11099-012-0045-3.
  • Wu S, Zhou S, Li X. 2011. Determining the anthropogenic contribution of heavy metal accumulations around a typical industrial town: Xushe, China. J Geochem Explor. 110(2):92–97. doi:10.1016/j.gexplo.2011.04.002.
  • Xu DM, Fu RB, Liu HQ, Guo XP. 2021. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: a critical review. J Clean Prod. 286:124989. doi:10.1016/j.jclepro.2020.124989.
  • Yadav SK. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot. 76(2):167–179. doi:10.1016/j.sajb.2009.10.007.
  • Yahaghi Z, Shirvani M, Nourbakhsh F, & Pueyo JJ. 2019. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S Afr J Bot 124:573–582.
  • Yi XU, Liang X, Yingming XU, Xu QIN, Huang Q, Lin ANG, & Yuebing SUN. 2017. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2):193–204.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL. 2012. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J. 184:1–8. doi:10.1016/j.cej.2012.01.041.
  • Zhao X, Joo JC, Kim JY. 2021. Evaluation of heavy metal phytotoxicity to Helianthus annuus L. using seedling vigor index-soil model. Chemosphere. 275:130026. doi:10.1016/j.chemosphere.2021.130026.
  • Zia-ur-Rehman, M, Sabir M, & Nadeem M. 2015. Remediating cadmium-contaminated soils by growing grain crops using inorganic amendments. In Soil Remediation and Plants: Prospects and Challenges; Elsevier Inc., Academic Press: Amsterdam, The Netherlands, pp. 367–396.
  • Zou J, Song F, Lu Y, Zhuge Y, Niu Y, Lou Y, Pan H, Zhang P, Pang L. 2021. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere. 276:130223. doi:10.1016/j.chemosphere.2021.130223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.