207
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses

, ORCID Icon, , , , , & show all

References

  • Adeniyi OO, Ariwoola OS. 2019. Comparative proximate composition of maize (Zea mays L.) varieties grown in south-western Nigeria. Int Annals Sci. 7(1):1–5. doi:10.21467/ias.7.1.1-5.
  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 9:42. doi:10.3390/toxics9030042.
  • Al-Mur BA. 2021. Assessment of heavy metal contamination in water, sediments, and Mangrove plant of Al-Budhai region, Red Sea Coast, Kingdom of Saudi Arabia. J Taibah Uni Sci. 15(1):423–441. doi:10.1080/16583655.2021.1985871.
  • Alsafran M, Usman K, Rizwan M, Ahmed T, Al Jabri H. 2021. The carcinogenic and non- carcinogenic health risks of metal(oid)s, bioaccumulation in leafy vegetables: a consumption advisory. Front Environ Sci. 9:742269. doi:10.3389/fenvs.2021.742269.
  • Álvarez-Iglesias L, Malvar RA, Garzón R, Rosell CM, Revilla P. 2021. Nutritional value of whole maize kernels from diverse endosperm types and effects on rheological quality. Agronomy. 11:2509. doi:10.3390/agronomy11122509.
  • Arigbede OE, Olutona GO, Dawodujo MO. 2019. Dietary intake and risk assessment of heavy metals from selected biscuit brands in Nigeria. J Heavy Metal Toxicity Dis. 4:2–3. doi:10.21767/2473-6457.10027.
  • Azeez L, Adejumo AL, Simiat OM, Lateef A. 2020. Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health. Food Measure. 14(4):2185–2195.
  • Azeez L, Lateef A, Wahab AA, Rufai MA, Salau AK, Ajayi EIO, Ajayi M, Adegbite MK, Adebisi B. 2019. Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: its antiphytopathogenic and hepatoprotective potentials. Plant Physiol Biochem. 136(109):117. doi:10.1016/j.plaphy.2018.12.006.
  • Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi SO, Tijani KO, Olaoye S. 2019. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol Biochem. 139:283–292. doi:10.1016/j.plaphy.2019.03.030.
  • Azeez L, Adebisi SA, Adetoro RO, Oyedeji AO, Agbaje WB, Olabode OA. 2022. Foliar application of silver nanoparticles differentially intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. Int J Phytoremed. 24(4):384–393. doi:10.1080/15226514.2021.1949578.
  • Azeez L, Adetoro RO, Busari HK, Aremu HK, Adeleke JT, Adewinbi S, Olabode OA, Ayandayo I. 2022. AgNPs-TiO2NPs doped calcined hydroxyapatite for effective removal of ibuprofen and Acetaminophen. Int J Environ Anal Chem. doi:10.1080/03067319.2022.2106434.
  • Azim Z, Singh NB, Khare S, Singh A, Amist N, Niharika , Yadav RK, Hussain I. 2022. Potential role of biosynthesized zinc oxide nanoparticles in counteracting lead toxicity in Solanum lycopersicum L. Plant Nano Biol. 2:100012. doi:10.1016/j.plana.2022.100012.
  • Azim Z, Singh NB, Khare S, Singh A, Amist N, Niharika , Yadav RK. 2022. Green synthesis of zinc oxide nanoparticles using Vernonia cinerea leaf extract and evaluation as nano nutrient on the growth and development of tomato seedling. Plant Nano Biol. 2:100011. doi:10.1016/j.plana.2022.100011.
  • Chijioke NO, Uddin Khandaker M, Tikpangi KM, Bradley DA. 2020. Metal uptake in chicken giblets and human health implications. J Food Compos Anal. 85:103332. doi:10.1016/j.jfca.2019.103332.
  • Ebrahimbabaie P, Meeinkuirt W, Pichtel J. 2020. Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci. 93:151–163. doi:10.1016/j.jes.2020.03.034.
  • Gajić G, Djurdjević L, Kostić O, Jarić S, Stevanović B, Mitrović M, Pavlović P. 2020. Phytoremediation potential, photosynthetic and antioxidant response to arsenic-induced stress of Dactylis glomerata L. sown on fly ash deposits. Plants. 9:657. doi:10.3390/plants9050657.
  • Gong X, Huang D, Liu Y, Peng Z, Zeng G, Xu P, Cheng M, Wang R, Wan J. 2018. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol. 38(3):455–468.
  • Gupta SD, Agarwal A, Pradhan S. 2018. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf. 161:624–633. doi:10.1016/j.ecoenv.2018.06.023.
  • Hammami H, Parsa M, Rashed MH, Mohassel , Rahimi S, Mijani S. 2016. Weeds ability to phytoremediate cadmium-contaminated soil. Int J Phytorem. 18(1):48–53. doi:10.1080/15226514.2015.1058336.
  • Hamid Y, Tang L, Hussain B, Usman M, Gurajala HK, Rashid MS, He Z, Yang X. 2020. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ Pollut. 257:113609. doi:10.1016/j.envpol.2019.113609.
  • Hao H, Li P, Lv P, Chen W, Ge D. 2022. Probabilistic health risk assessment for residents exposed to potentially toxic elements near typical mining areas in China. Environ Sci Pollut Res. 29:58791–58809. doi:10.1007/s11356-022-20015-5.
  • Hdira S, Haddoudi L, Hanana M, Romero I, Mahjoub A, Ben Jouira H, Ludidi N, Sanchez-Ballesta MT, Abdelly C, Badri M. 2021. Morpho-physiological, biochemical, and genetic responses to salinity in Medicago truncatula. Plants. 10:808. doi:10.3390/plants10040808.
  • Hidalgo KTS, Carríon-Huertas PJ, Kinch RT, Betancourt LE, Cabrera CR. 2020. Phytonanoremediation by Avicennia germinans (black mangrove) and nano zero valent iron for heavy metal uptake from Cienaga Las Cucharillas wetland soils. Environ Nanotechnol Monit Manag. 14:100363. doi:10.1016/j.enmm.2020.100363.
  • Hong Y, Li D, Xie C, Zheng X, Yin J, Li Z, Zhang K, Jiao Y, Wang B, Hu Y, et al. 2022. Combined apatite, biochar, and organic fertilizer application for heavy metal co contaminated soil remediation reduces heavy metal transport and alters soil microbial community structure. Sci Total Environ. 851(Pt 1):158033. doi:10.1016/j.scitotenv.2022.158033.
  • Hou S, Zhenga N, Tanga L, Ji X, Li Y, Hua X. 2019. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ Int. 128:430–437. doi:10.1016/j.envint.2019.04.046.
  • Kushwaha BK, Singh VP. 2020. Glutathione and hydrogen sulfide are required for sulfur-mediated mitigation of Cr(VI) toxicity in tomato, pea and brinjal seedlings. Physiol Plant. 168:406–421. doi:10.1111/ppl.13024.
  • Lan M-M, Liu C, Liu S-J, Qiu R-L, Tang Y-T. 2020. Phytostabilization of Cd and Pb in highly polluted farmland soils using ramie and amendments. Int J Environ Res Public Health. 17(5):1661. doi:10.3390/ijerph17051661.
  • Lawal AT, Azeez L, Sulaiman WK. 2021. Silver nanoparticles (AgNPs) alleviate naphthalene triggered oxidative stress and physiological deficiencies in Moringa oleifera. Chem Ecol. 37(1):15–31. doi:10.1080/02757540.2020.1819254.
  • Leung HM, Yue PYK, Sze SCW, Au CK, Cheung KC, Chan KL, Yung KLK, Li WC. 2019. The potential of Mikania micrantha (Chinese creeper) to hyperaccumulate heavy metals in soil contaminated by electronic waste. Environ Sci Pollut Res. 26:35275–35280. doi:10.1007/s11356-019-06771-x.
  • Li F-L, Qiu Y, Xu X, Yang F, Wang Z, Feng J, Wang J. 2020. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicol Environ Saf. 191(15):110185. doi:10.1016/j.ecoenv.2020.110185.
  • Njoku KL, Nwani SO. 2022. Phytoremediation of heavy metals contaminated soil samples obtained from mechanic workshop and dumpsite using Amaranthus spinosus. Sci Afr. 17:e01278. doi:10.1016/j.sciaf.2022.e01278.
  • Noni-Morales D, Barros D, Castro SA, Ortiz C. 2019. Germination and seedling growth of the Chilean native grass Polypogon australis in soil polluted with diesel oil. Int J Phytoremed. 21(1):14–18. doi:10.1080/15226514.2018.1523868.
  • Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO. 2020. Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol. 310:54–61. doi:10.1016/j.jbiotec.2020.01.009.
  • Okafor UC, Onyekwuluje C, Kenechukwu EJ, Okafor NM, Egonu SN, Obayi HC, Adeosun CA. 2022. In Vitro Screening of Zea mays L. for drought tolerance. Nig J Biotech. 39(1):1–8. doi:10.4314/njb.v39i1.1.
  • Page A, Miller RH, Keeney DR. 1982. Soil analysis part 2. Chemical and microbiological properties. Madison (WI): ASA, SSSA.
  • Panda D, Mandal L, Barik J. 2020. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. Int J Phytoremed. 22(11):1195–1203. doi:10.1080/15226514.2020.1754757.
  • Pandey B, Suthar S, Chand N. 2022. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere. 307(Pt 2):135889. doi:10.1016/j.chemosphere.2022.135889.
  • Peirovi‑Minaee R, Alami A, Moghaddam A, Zarei A. 2022. Determination of concentration of metals in grapes grown in Gonabad vineyards and assessment of associated health risks. Biol Trace Elem Res. doi:10.1007/s12011-022-03428-8.
  • Pramanik K, Maiti TK, Mandal NC. 2021. Potential role of heavy metal-resistant plant growth promoting rhizobacteria in the bioremediation of contaminated fields and enhancement of plant growth essential for sustainable agriculture. In: De Mandal S, Passari AK, editors. Recent advance microbial biotechnology agricultural industrial approach. Cambridge (MA): Academic Press; p. 357–385. doi:10.1016/B978-0-12-8220986.00014-8.
  • Raklami A, Tahiri A, Bechtaoui N, Abdelhay E, Pajuelo E, Baslam M, Meddich M, Oufdou K. 2021. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J Environ Sci. 90:210–221. doi:10.1016/j.jes.2020.06.032.
  • Ramadan WF, Balah MA. 2022. The use of some weeds type in the disposal of heavy metals in contaminated soil. J Saudi Soc Agric Sci. 21:289–295. doi:10.1016/j.jssas.2021.09.008.
  • Rasheed F, Zafar Z, Waseem ZA, Rafay M, Abdullah M, Abdus Salam MM, Mohsin M, Khan WR. 2019. Phytoaccumulation of Zn, Pb, and Cd in Conocarpus lancifolius irrigated with wastewater: does physiological response influence heavy metal uptake? Int J Phytoremed. 22:287–294. doi:10.1080/15226514.2019.1658711.
  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M. 2020. Phytoremediation of Cadmium: physiological, Biochemical, and Molecular Mechanisms. Biology. 9:177. doi:10.3390/biology9070177.
  • Razmi B, Ghasemi-Fasaei R, Ronaghi A, Mostowfizadeh-Ghalamfarsa R. 2021. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicol Environ Saf. 207:111315. doi:10.1016/j.ecoenv.2020.111315.
  • Sharma B, Suthar S. 2021. Enriched biogas and biofertilizer production from Eichhornia weed biomass in cow dung biochar-amended anaerobic digestion system. Environ Technol Innovat. 21:101201. doi:10.1016/j.eti.2020.101201.
  • Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, Zhang P, Ye S. 2019. Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol. 49(9):791–824. doi:10.1080/10643389.2018.1558891.
  • Timalsina H, Gyawali T, Ghimire S, Paudel SR. 2022. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere. 306:135581. doi:10.1016/j.chemosphere.2022.135581.
  • Tomno RT, Nzeve JK, Mailu SN, Shitanda D, Waswa F. 2020. Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya. Sci Afr. 9:e00539. doi:10.1016/j.sciaf.2020.e00539.
  • Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S. 2019. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Int J Phytoremed. 21(10):1012–1018. doi:10.1080/15226514.2019.1594683.
  • Ullah S, Ali R, Mahmood S, Riaz MA, Akhtar K. 2020. Differential growth and metal accumulation response of Brachiaria Mutica and Leptochloa Fusca on cadmium and lead contaminated soil. Soil Sediment Contam. 29(8):844–859. doi:10.1080/15320383.2020.1777935.
  • Ullah S, Iqbal Z, Mahmood S, Akhtar K, Ali R. 2020. Phytoextraction potential of different grasses for the uptake of cadmium and lead from industrial wastewater. Soil Environ. 39(1):77–86. doi:10.25252/SE/2020/91796.
  • Wang L, Pan T, Gao X, An J, Ning C, Li S, Cai K. 2022. Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact. 28:100418. doi:10.1016/j.impact.2022.100418.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11:. 59. doi:10.3389/fpls.2020.00359.
  • Zhan F, Zeng W, Yuan X, Li B, Li T, Zu Y, Jiang M, Li Y. 2019. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb Zn mine in Yunnan Province, China. Environ Sci Pollut Res. 26:7743–7751. doi:10.1007/s11356-018-04079-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.