176
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of water-soil-plant relationships based on hazardous and macro-micro element concentrations on Orontes River, Türkiye

ORCID Icon & ORCID Icon

References

  • Abdullah M, Zakaria N, Ahmad-Hamdani MS, Juraimi AS. 2021. Water scarcity in the rice fields: a review on water and weed interaction in the lowland rice production areas. Plant Arch. 21(Suppl-1):1707–1712. doi:10.51470/PLANTARCHIVES.2021.v21.S1.270.
  • Adel MM. 2013. Cunning strategy for upstream water piracy and remedial measures. Environ Justice. 6(4):145–162. doi:10.1089/env.2013.0005.
  • Ali MM, Ali ML, Proshad R, Islam S, Rahman Z, Tusher TR, Kormoker T, Al MA. 2020. Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human Ecol Risk Assess Int J. 26(10):2646–2662. doi:10.1080/10807039.2019.1676635.
  • Altay V, Daloğlu MY, Öztürk M. 2017. Edaphic relations of Cirsium cassium Davis & Parris (Asteraceae), a local endemic from Hatay (Turkey). Anatolian J Bot. 1(2):41–44. doi:10.30616/ajb.350076.
  • Baldantoni D, Bellino A. 2021. On the capability of the epigeous organs of phragmites Australis to act as metal accumulators in biomonitoring studies. Sustainability. 13(14):7745. doi:10.3390/su13147745.
  • Barker AV, Pilbeam DJ. 2015. Handbook of plant nutrition. Boca Raton (FL): CRC Press. p. 1–773.
  • Bian F, Zhong Z, Zhang X, Yang C, Gai X. 2020. Bamboo–an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere. 246:125750. doi:10.1016/j.chemosphere.2019.125750.
  • Blume HP, Brummer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Welp G. 2010. Scheffer/Schachtschabel. Lehrbuch Der Bodenkunde. 16:1–569.
  • Bokor B, Santos CS, Kostoláni D, Machado J, da Silva MN, Carvalho SMP, Vaculík M, Vasconcelos MW. 2021. Mitigation of climate change and environmental hazards in plants: potential role of the beneficial metalloid silicon. J Hazard Mater. 416:126193. doi:10.1016/j.jhazmat.2021.126193.
  • Bonanno G, Giudice RL. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic. 10(3):639–645. doi:10.1016/j.ecolind.2009.11.002.
  • Bonanno G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf. 74(4):1057–1064. doi:10.1016/j.ecoenv.2011.01.018.
  • Bonanno G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf. 97:124–130. doi:10.1016/j.ecoenv.2013.07.017.
  • Bonanno G, Vymazal J. 2017. Compartmentalization of potentially hazardous elements in macrophytes: insights into capacity and efficiency of accumulation. J Geochem Explor. 181:22–30. doi:10.1016/j.gexplo.2017.06.018.
  • Bonanno G, Vymazal J, Cirelli GL. 2018. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci Total Environ. 631–632:252–261. doi:10.1016/j.scitotenv.2018.03.039.
  • Borisova G, Chukina N, Maleva M, Prasad MNV. 2014. Ceratophyllum demersum L. and Potamogeton alpinus Balb. from Iset’river, Ural region, Russia differ in adaptive strategies to heavy metals exposure–a comparative study. Int J Phytoremediation. 16(6):621–633. doi:10.1080/15226514.2013.803022.
  • Can H, Ozyigit II, Can M, Hocaoglu-Ozyigit A, Yalcin IE. 2021. Environment-based impairment in mineral nutrient status and heavy metal contents of commonly consumed leafy vegetables marketed in Kyrgyzstan: a case study for health risk assessment. Biol Trace Elem Res. 199(3):1123–1144. doi:10.1007/s12011-020-02208-6.
  • Cao L, Zheng J, Tsukada H, Pan S, Wang Z, Tagami K, Uchida S. 2016. Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta. 159:55–63. doi:10.1016/j.talanta.2016.06.008.
  • Caparros PG, Ozturk M, Gul A, Batool TS, Pirasteh-Anosheh H, Unal BT, Altay V, Toderich KN. 2022. Halophytes have potential as heavy metal phytoremediators: a comprehensive review. Environ Exp Bot. 193:104666. doi:10.1016/j.envexpbot.2021.104666.
  • Chai Y, Bai M, Chen A, Peng L, Shao J, Shang C, Peng C, Zhang J, Zhou Y. 2022. Thermochemical conversion of heavy metal contaminated biomass: fate of the metals and their impact on products. Sci Total Environ. 822:153426. doi:10.1016/j.scitotenv.2022.153426.
  • Chakraborty SK. 2019. Bioinvasion and environmental perturbation: synergistic impact on coastal–mangrove ecosystems of West Bengal, India. In Impacts of invasive species on coastal environments. Cham: Springer. p. 171–245.
  • Cicero-Fernandez D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B. 2016. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. Int J Phytoremediation. 18(6):575–582. doi:10.1080/15226514.2015.1086306.
  • Coelho DG, Marinato CS, de Matos LP, de Andrade HM, da Silva VM, Neves PHS, de Oliveira JA. 2020. Evaluation of metals in soil and tissues of economic‐interest plants grown in sites affected by the Fundão dam failure in Mariana, Brazil. Integr Environ Assess Manag. 16(5):596–607. doi:10.1002/ieam.4253.
  • Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, Loppi S, Gonnelli C. 2022. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J Hazard Mater. 423(Pt B):127238. doi:10.1016/j.jhazmat.2021.127238.
  • Cristaldi A, Oliveri Conti G, Cosentino SL, Mauromicale G, Copat C, Grasso A, Zuccarello P, Fiore M, Restuccia C, Ferrante M. 2020. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environ Res. 185:109427. doi:10.1016/j.envres.2020.109427.
  • De Caroli M, Furini A, DalCorso G, Rojas M, Di Sansebastiano GP. 2020. Endomembrane reorganization induced by heavy metals. Plants. 9(4):482. doi:10.3390/plants9040482.
  • Dey M, Akter A, Islam S, Dey SC, Choudhury TR, Fatema KJ, Begum BA. 2021. Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon. 7(12):e08625. doi:10.1016/j.heliyon.2021.e08625.
  • Dhaliwal SS, Singh J, Taneja PK, Mandal A. 2020. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res Int. 27(2):1319–1333. doi:10.1007/s11356-019-06967-1.
  • Eid EM, Shaltout KH, Al-Sodany YM, Haroun SA, Galal TM, Ayed H, Khedher KM, Jensen K. 2021. Temporal potential of Phragmites australis as a phytoremediator to remove Ni and Pb from water and sediment in Lake Burullus, Egypt. Bull Environ Contam Toxicol. 106(3):516–527. doi:10.1007/s00128-021-03120-y.
  • Elmorsi RR, Abou-El-Sherbini KS, Mostafa GAH, Hamed MA. 2019. Distribution of essential heavy metals in the aquatic ecosystem of Lake Manzala, Egypt. Heliyon. 5(8):e02276. doi:10.1016/j.heliyon.2019.e02276.
  • EPA (United States Environmental Protection Agency). 2004. National recommended water quality criteria, United States. EPA. Available at: http://water.epa.gov/.
  • Fernando AL, Barbosa B, Costa J, Papazoglou EG. 2016. Giant reed (Arundo donax L.): a multipurpose crop bridging phytoremediation with sustainable bioeconomy. In Bioremediation and bioeconomy. Amsterdam (Netherlands): Elsevier. p. 77–95.
  • Fletcher J, Willby N, Oliver DM, Quilliam RS. 2022. Resource recovery and freshwater ecosystem restoration–prospecting for phytoremediation potential in wild macrophyte stands. Resources, Environ Sustainability. 7:100050. doi:10.1016/j.resenv.2022.100050.
  • Hayyat MU, Nawaz R, Irfan A, Al-Hussain SA, Aziz M, Siddiq Z, Ahmad S, Zaki MEA. 2023. Evaluating the phytoremediation potential of Eichhornia crassipes for the removal of Cr and Li from synthetic polluted water. IJERPH. 20(4):3512. doi:10.3390/ijerph20043512.
  • Garcia-Ordiales E, Esbrí JM, Covelli S, López-Berdonces MA, Higueras PL, Loredo J. 2016. Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environ Sci Pollut Res Int. 23(7):6024–6038. doi:10.1007/s11356-015-4770-6.
  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. 2019. Heavy metal stress and responses in plants. Int J Environ Sci Technol. 16(3):1807–1828. doi:10.1007/s13762-019-02215-8.
  • Grifoni M, Franchi E, Fusini D, Vocciante M, Barbafieri M, Pedron F, Rosellini I, Petruzzelli G. 2022. Soil remediation: towards a resilient and adaptive approach to deal with the ever-changing environmental challenges. Environments. 9(2):18. doi:10.3390/environments9020018.
  • Gu C, Liu Y, Liu D, Li Z, Mohamed I, Zhang R, Brooks M, Chen F. 2016. Distribution and ecological assessment of heavy metals in irrigation channel sediments in a typical rural area of south China. Ecol Eng. 90:466–472. doi:10.1016/j.ecoleng.2016.01.054.
  • Jaafar HH, Zurayk R, King C, Ahmad F, Al-Outa R. 2015. Impact of the Syrian conflict on irrigated agriculture in the Orontes Basin. Int J Water Resour Dev. 31(3):436–449. doi:10.1080/07900627.2015.1023892.
  • Jaja N, Codling EE, Rutto LK, Timlin D, Reddy VR. 2022. Poultry litter and inorganic fertilization: effects on biomass yield, metal and nutrient concentration of three mixed-season perennial forages. Agronomy. 12(3):570. doi:10.3390/agronomy12030570.
  • Jucherski A, Walczowski A, Bugajski P, Jóźwiakowski K, Rodziewicz J, Janczukowicz W, Wu S, Kasprzyk M, Gajewska M, Mielcarek A. 2022. Long-term operating conditions for different sorption materials to capture phosphate from domestic wastewater. Sustainable MaterTechnol. 31:e00385. doi:10.1016/j.susmat.2021.e00385.
  • Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants. 3rd ed. Boca Raton; New York; Washington (DC): CRC Press. p. 1–432.
  • Kang M, Tian Y, Zhang H, Lan Q. 2020. Distribution, ecological risk assessment, and source identification of heavy metals in river sediments from Hai River and its Tributaries, Tianjin, China. Water Air Soil Pollut. 231(2):1–14. doi:10.1007/s11270-020-4404-6.
  • Kelly M, Juggins S, Moschandreou K, Kemitzoglou D, Tsiaoussi V. 2023. Development of novel diatom metrics to assess ecological status of phytobenthos in Greek lakes. Ecol Indic. 147:109974. doi:10.1016/j.ecolind.2023.109974.
  • Khalilzadeh R, Pirzad A, Sepehr E, Khan S, Anwar S. 2022. Efficiency of Phragmites australis under different times of wastewater irrigation in the soil–plant–water system. Int J Environ Sci Technol. 19(3):1957–1976. doi:10.1007/s13762-021-03337-8.
  • Khan N, Jamila N, Amin F, Masood R, Atlas A, Khan W, Ain NU, Khan SN. 2021. Quantification of macro, micro and trace elements, and antimicrobial activity of medicinal herbs and their products. Arabian J Chem. 14(4):103055. doi:10.1016/j.arabjc.2021.103055.
  • Klink A. 2017. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environ Sci Pollut Res Int. 24(4):3843–3852. doi:10.1007/s11356-016-8135-6.
  • Li Y, Xin J, Ge W, Tian R. 2022. Tolerance mechanism and phytoremediation potential of Pistia stratiotes to zinc and cadmium co-contamination. Int J Phytoremediation. 24(12):1259–1266. doi:10.1080/15226514.2021.2025201.
  • Liu M, Han Z, Yang Y. 2019. Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China. RSC Adv. 9(38):21893–21902. doi:10.1039/c9ra03479j.
  • Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. 2021. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater. 418:126253. doi:10.1016/j.jhazmat.2021.126253.
  • Mkandawire M, Dudel EG. 2007. Are Lemna spp. effective phytoremediation agents. Bioremediation, Biodivers Bioavailability. 1(1):56–71.
  • Moussa MG, Sun X, Ismael MA, Elyamine AM, Rana MS, Syaifudin M, Hu C. 2022. Molybdenum-induced effects on grain yield, macro–micro-nutrient uptake, and allocation in Mo-inefficient winter wheat. J Plant Growth Regul. 41(4):1516–1531. doi:10.1007/s00344-021-10397-0.
  • Nabuyanda MM, Kelderman P, van Bruggen J, Irvine K. 2022. Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. and Phragmites mauritianus in three Zambian wetlands. J Environ Manage. 304:114133. doi:10.1016/j.jenvman.2021.114133.
  • Naifar I, Pereira F, Zmemla R, Bouaziz M, Elleuch B, Garcia D. 2018. Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes Gulf, Tunisia. Mar Pollut Bull. 131(Pt A):53–62. doi:10.1016/j.marpolbul.2018.03.048.
  • Nawrot N, Wojciechowska E, Pazdro K, Szmagliński J, Pempkowiak J. 2021. Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: impact of seedling origin and initial trace metal content. Sci Total Environ. 768:144983. doi:10.1016/j.scitotenv.2021.144983.
  • Obarska-Pempkowiak H, Gajewska M, Wojciechowska E, Pempkowiak J. 2015. Treatment wetlands for environmental pollution control. New York (NY): Springer International Publishing. p. 169.
  • Odemis B, Sangun MK. 2007. Temporal variations in water quantity and quality of Orontes River, Turkey. Asian J Chem. 19(1):711–723.
  • Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V. 2020. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. IJERPH. 17(7):2204. doi:10.3390/ijerph17072204.
  • Oliver JC, de Oliveira Paula RA, Veiga SMOM. 2021. Chemical and bacteriological analysis of the water from drinking fountains located in a Higher Education Institution. RSD. 10(2):e8010212145-e8010212145. doi:10.33448/rsd-v10i2.12145.
  • Ozdilek H, Sangun M. 2007. Monitoring surface water quality of Asi river during the 2006 Muslim Sacrifice Holiday. Asian J Chem. 19(1):701–705.
  • Ozyigit II, Arda L, Yalcin B, Yalcin IE, Ucar B, Hocaoglu-Ozyigit A. 2021. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. Int J Phytoremediation. 23(12):1255–1269. doi:10.1080/15226514.2021.1892586.
  • Ozyigit II, Karahan F, Yalcin IE, Hocaoglu-Ozyigit A, Ilcim A. 2022. Heavy metals and trace elements detected in the leaves of medicinal plants collected in the southeast part of Turkey. Arab J Geosci. 15(1):1–21. doi:10.1007/s12517-021-09264-9.
  • Papazoglou EG, Karantounias GA, Vemmos SN, Bouranis DL. 2005. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ Int. 31(2):243–249. doi:10.1016/j.envint.2004.09.022.
  • Prica M, Andrejic G, Sinzar-Sekulic J, Rakic T, Dzeletovic Z. 2019. Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation. Bot Serb. 43(1):85–95. doi:10.2298/BOTSERB1901085P.
  • Raimi MO, Ayibatonbira AA, Anu B, Odipe OE, Deinkuro NS. 2019. Digging deeper’ evidence on water crisis and its solution in Nigeria for Bayelsa State: a study of current scenario. Int J Hydro. 3(4):244–257.
  • Ristorini M, Astolfi ML, Frezzini MA, Canepari S, Massimi L. 2020. Evaluation of the efficiency of Arundo donax L. leaves as biomonitors for atmospheric element concentrations in an urban and industrial area of central Italy. Atmosphere. 11(3):226. doi:10.3390/atmos11030226.
  • Saade-Sbeih M, Asaad AH, Shamali O, Zwahlen F, Jaubert R. 2018. Groundwater balance politics: aquifer overexploitation in the Orontes River basin. Water Altern. 11(3):663.
  • Serafini RJM, Arreghini S, Troiani HE, de Iorio ARF. 2022. Copper, zinc, and chromium accumulation in aquatic macrophytes from a highly polluted river of Argentina. Environ Sci Pollut Res. 30(11):31242–31255. doi:10.1007/s11356-022-24380-z.
  • Siddiqui E, Pandey J. 2019. Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res Int. 26(11):10926–10940. doi:10.1007/s11356-019-04495-6.
  • Singh M, Ansari AA, Müller G, Singh IB. 1997. Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Environ Geol. 29(3-4):246–252. doi:10.1007/s002540050123.
  • Singh A, Prasad SM, Singh RP, editors. 2016. Plant responses to xenobiotics. Vol. 362. Singapore: Springer.
  • Snirc M, Arvay J, Kral M, Janco I, Zajac P, Harangozo L, Benesova L. 2020. Content of mineral elements in the traditional Oštiepok cheese. Biol Trace Elem Res. 196(2):639–645. doi:10.1007/s12011-019-01934-w.
  • Soliman MM, Hesselberg T, Mohamed AA, Renault D. 2022. Trophic transfer of heavy metals along a pollution gradient in a terrestrial agro-industrial food web. Geoderma. 413:115748. doi:10.1016/j.geoderma.2022.115748.
  • Stroppa N, Onelli E, Hejna M, Rossi L, Gagliardi A, Bini L, Baldi A, Moscatelli A. 2020. Typha latifolia and Thelypteris palustris behavior in a pilot system for the refinement of livestock wastewaters: a case of study. Chemosphere. 240:124915. doi:10.1016/j.chemosphere.2019.124915.
  • Sultan MB, Choudhury TR, Alam MNE, Doza MB, Rahmana MM. 2022. Soil, dust, and leaf-based novel multi-sample approach for urban heavy metal contamination appraisals in a megacity, Dhaka, Bangladesh. Environ Adv. 7:100154. doi:10.1016/j.envadv.2021.100154.
  • Sungur S, Ozkan A. 2017. Characterization of wastewaters obtained from Hatay tanneries. Nat Eng Sci. 2(2):111–118. doi:10.28978/nesciences.330599.
  • SWQRT (Surface Water Quality Regulations of Türkiye). 2015. http://mevzuat.gov.tr/
  • Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, et al. 2022. Metal tolerance in plants: molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere. 287(Pt 1):131957. doi:10.1016/j.chemosphere.2021.131957.
  • Tshapa L, Naidoo K, Naidoo G. 2021. Morphological and physiological responses of Arundo donax and Phragmites australis to waterlogging stress. Flora. 279:151816. doi:10.1016/j.flora.2021.151816.
  • Turan O, Ozdemir H, Demir G. 2020. Deposition of heavy metals on coniferous tree leaves and soils near heavy urban traffic. Front Life Sci Relat Technol. 1(1):35–41.
  • Xia H, Wang Y, Liao M, Lin L, Zhang F, Tang Y, Zhang H, Wang J, Liang D, Deng Q, et al. 2020. Effects of different rootstocks on cadmium accumulation characteristics of the post-grafting generations of Galinsoga parviflora. Int J Phytoremediation. 22(1):62–68. doi:10.1080/15226514.2019.1644287.
  • Vats S, Sudhakaran S, Bhardwaj A, Mandlik R, Sharma Y, Kumar S, Tripathi DK, Sonah H, Sharma TR, Deshmukh R. 2021. Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. J Hazard Mater. 408:124910. doi:10.1016/j.jhazmat.2020.124910.
  • Vodyanitskii YN. 2013. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sc. 46(7):793–801. doi:10.1134/S1064229313050153.
  • Wekumbura WGC, Mohotti AJ, Arachchi LV, Mohotti KM. 2010. Comparison of assimilate partitioning in organically and conventionally grown tea. J Agric Sci. 5(1):32–41. doi:10.4038/jas.v5i1.2330.
  • Yalcin IE, Ozyigit II, Dogan I, Demir G, Yarci C. 2020. Using the Turkish red pine tree to monitor heavy metal pollution. Pol J Environ Stud. 29(5):3881–3889. doi:10.15244/pjoes/114505.
  • Yalcin IE. 2023. Ecophysiological and genetic approach on investigation of water-soil-plant relationships based on heavy metal concentrations at different localities of the Orontes River [doctoral thesis]. Hatay Mustafa Kemal University, Natural and Applied Sciences, Biology Program. Türkiye. p. 1–171.
  • Yang J, Zheng G, Yang J, Wan X, Song B, Cai W, Guo J. 2017. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecol Eng. 107:56–64. doi:10.1016/j.ecoleng.2017.06.052.
  • Yilmaz N, Ozyigit II, Demir HH, Yalcin IE. 2021. Assessment on phytoplankton composition and heavy metal pollution in a drinking water resource: lake Terkos (Istanbul, Turkey). DWT. 225:265–274. doi:10.5004/dwt.2021.27221.
  • Zhang S, Bai J, Wang W, Huang L, Zhang G, Wang D. 2018. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China. Physics and Chemistry of the Earth, Parts A/B/C. 104:3–8. doi:10.1016/j.pce.2018.02.011.
  • Zhang D, Jiang Q, Liang D, Huang S, Liao J. 2021. The potential application of giant Reed (Arundo donax) in Ecological Remediation. Front Environ Sci. 9:140. doi:10.3389/fenvs.2021.652367.
  • Zhuang Q, Li G, Liu Z. 2018. Distribution, source and pollution level of heavy metals in river sediments from South China. Catena. 170:386–396. doi:10.1016/j.catena.2018.06.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.