129
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Removal of cationic and anionic toxic pollutants from simulated solutions using Sterculia foetida pod (SFP): equilibrium isotherm, kinetics, and characterization

, &

References

  • Abbas M, Trari M. 2020. Removal of methylene blue in aqueous solution by economic adsorbent derived from apricot stone activated carbon. Fibers Polym. 21(4):810–820. doi:10.1007/s12221-020-8630-8.
  • Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S, Jawad AH, Wilson LD, Yaseen ZM, Al-Kahtani AA, Alothman ZA. 2021. Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. J Environ Chem Eng. 9(4):105530. doi:10.1016/j.jece.2021.105530.
  • Abshirini Y, Foroutan R, Esmaeili H. 2019. Cr (VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina-christi leaf. Mater Res Express. 6(4):045607. doi:10.1088/2053-1591/aafb45.
  • Ajmani A, Shahnaz T, Subbiah S, Narayanasamy S. 2019. Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach. Environ Sci Pollut Res Int. 26(31):32137–32150. doi:10.1007/s11356-019-06335-z.
  • Ansari MI, Malik A. 2007. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol. 98(16):3149–3153. doi:10.1016/j.biortech.2006.10.008.
  • Asimakopoulos G, Baikousi M, Salmas C, Bourlinos AB, Zboril R, Karakassides MA. 2021. Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the “Posidonia oceanica” seagrass. J Hazard Mater. 405. doi:10.1016/j.jhazmat.2020.124274.
  • Bahrudin NN, Nawi MA, Jawad AH, Sabar S. 2020. Adsorption characteristics and mechanistic study of immobilized chitosan-montmorillonite composite for methyl orange removal. J Polym Environ. 28(7):1901–1913. doi:10.1007/s10924-020-01734-7.
  • Calero M, Pérez A, Blázquez G, Ronda A, Martín-Lara MA. 2013. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol Eng. 58:344–354. doi:10.1016/j.ecoleng.2013.07.012.
  • Elwakeel KZ, Elgarahy AM, Al-Bogami AS, Hamza MF, Guibal E. 2021. 2-Mercaptobenzimidazole-functionalized chitosan for enhanced removal of methylene blue: batch and column studies. J Environ Chem Eng. 9(4):105609. doi:10.1016/j.jece.2021.105609.
  • Enniya I, Rghioui L, Jourani A. 2018. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm. 7:9–16. doi:10.1016/j.scp.2017.11.003.
  • Feng B, Shen W, Shi L, Qu S. 2018. Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution. R Soc Open Sci. 5(1):171662 10.1098/rsos.171662.
  • Freundlich H, Heller W. 1939. The adsorption of cis- and trans-azobenzene. J Am Chem Soc. 61(8):2228–2230. doi:10.1021/ja01877a071.
  • Geetha P, Latha MS, Koshy M. 2015. Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study. J Mol Liq. 212:723–730. doi:10.1016/j.molliq.2015.10.035.
  • Ghosal PS, Gupta AK. 2017. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J Mol Liq. 225:137–146. doi:10.1016/j.molliq.2016.11.058.
  • Goswami M, Phukan P. 2017. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng. 5(4):3508–3517. doi:10.1016/j.jece.2017.07.016.
  • Guo C, Ding L, Jin X, Zhang H, Zhang D. 2021. Application of response surface methodology to optimize chromium (VI) removal from aqueous solution by cassava sludge-based activated carbon. J Environ Chem Eng. 9(1):104785. doi:10.1016/j.jece.2020.104785.
  • Guo D, Li Y, Cui B, Hu M, Luo S, Ji B, Liu Y. 2020. Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. J Clean Prod. 267:121903. doi:10.1016/j.jclepro.2020.121903.
  • Hariharan A, Harini V, Sandhya S, Rangabhashiyam S. 2020. Waste Musa acuminata residue as a potential biosorbent for the removal of hexavalent chromium from synthetic wastewater. Biomass Convers Biorefin. 25:1–14.
  • Hoslett J, Ghazal H, Mohamad N, Jouhara H. 2020. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material. Sci Total Environ. 714:136832. doi:10.1016/j.scitotenv.2020.136832.
  • Hossain MA, Ngo HH, Guo WS, Setiadi T. 2012. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol. 121:386–395. doi:10.1016/j.biortech.2012.06.119.
  • Hyder AH, Begum SA, Egiebor NO. 2015. Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J Environ Chem Eng. 3(2):1329–1336. doi:10.1016/j.jece.2014.12.005.
  • Islam MA, Angove MJ, Morton DW. 2019. Recent innovative research on chromium (VI) adsorption mechanism. Environ Nanotechnol Monit Manag. 12:100267. doi:10.1016/j.enmm.2019.100267.
  • Islam MA, Awual MR, Angove MJ. 2019. A review on nickel(II) adsorption in single and binary component systems and future path. J Environ Chem Eng. 7(5):103305. doi:10.1016/j.jece.2019.103305.
  • Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah MA, Nawawi WI, Alothman ZA, Rizwan Khan M. 2021. Fabrication of Schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Polym Environ. 29(9):2855–2868. doi:10.1007/s10924-021-02057-x.
  • Jawad AH, Kadhum AM, Ngoh YS. 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalin Water Treatment. 109:231–240. doi:10.5004/dwt.2018.21976.
  • Kristanti RA, Kamisan MKA, Hadibarata T. 2016. Treatability of methylene blue solution by adsorption process using Neobalanocarpus hepmii and Capsicum annuum. Water Air Soil Pollut. 227(5). doi:10.1007/s11270-016-2834-y.
  • Kumar A, Patra C, Kumar S, Narayanasamy S. 2022. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res. 206:112604. doi:10.1016/j.envres.2021.112604.
  • Kumar S, Patra C, Narayanasamy S, Venkatesh Rajaraman P. 2020. Performance of acid-activated water caltrop (Trapa natans) shell in fixed bed column for hexavalent chromium removal from simulated wastewater. Environ Sci Pollut Res Int. 27(22):28042–28052. doi:10.1007/s11356-020-09155-8.
  • Li H, Liu L, Cui J, Cui J, Wang F, Zhang F. 2020. High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism. RSC Adv. 10(24):14262–14273. doi:10.1039/d0ra01245a.
  • Liu Y. 2006. Some consideration on the Langmuir isotherm equation. Colloids Surf A Physicochem Eng Asp. 274(1–3):34–36. doi:10.1016/j.colsurfa.2005.08.029.
  • Maduako JN, Hamman M. 2004. Determination of some physical properties of three groundnut varieties. Niger J Technol. 24(2):12–18.
  • Mahalakshmi M, Saranaathan SE. 2019. Film-pore diffusion modeling for the adsorption of aqueous dye solution onto acid-treated sugarcane bagasse. Desalin Water Treatment. 168:324–339. doi:10.5004/dwt.2019.24645.
  • Malek NNA, Jawad AH, Ismail K, Razuan R, Alothman ZA. 2021. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: adsorption parametric optimization. Int J Biol Macromol. 189:464–476. doi:10.1016/j.ijbiomac.2021.08.160.
  • Mathivanan M, Syed Abdul Rahman S, Vedachalam R, Surya Pavan Kumar A, Sabareesh G, Karuppiah S. 2021. Ipomoea carnea: a novel biosorbent for the removal of methylene blue (MB) from aqueous dye solution: kinetic, equilibrium and statistical approach. Int J Phytoremed. 23(9):982–1000. doi:10.1080/15226514.2020.1871322.
  • Miranda MA, Dhandapani P, Kalavathy MH, Miranda LR. 2010. Chemically activated ipomoea carnea as an adsorbent for the copper sorption from synthetic solutions. Adsorption. 16(1–2):75–84. doi:10.1007/s10450-010-9209-2.
  • Misran E, Bani O, Situmeang EM, Purba AS. 2022. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: isotherm, kinetics, and reusability. Alex Eng J. 61(3):1946–1955. doi:10.1016/j.aej.2021.07.022.
  • Mullick A, Moulik S, Bhattacharjee S. 2018. Removal of hexavalent chromium from aqueous solutions by low-cost rice husk-based activated carbon: kinetic and thermodynamic studies. Indian Chem Eng. 60(1):58–71. doi:10.1080/00194506.2017.1288173.
  • Nuithitikul K, Phromrak R, Saengngoen W. 2020. Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution. Sci Rep. 10(1):3343. doi:10.1038/s41598-020-60161-9.
  • Oguntimein GB. 2015. Biosorption of dye from textile wastewater effluent onto alkali treated dried sunflower seed hull and design of a batch adsorber. J Environ Chem Eng. 3(4):2647–2661. doi:10.1016/j.jece.2015.09.028.
  • Paduraru C, Tofan L, Teodosiu C, Bunia I, Tudorachi N, Toma O. 2015. Biosorption of zinc(II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ Prot. 94:18–28. doi:10.1016/j.psep.2014.12.003.
  • Panday KK, Prasad G, Singh VN. 1986. Use of wollastonite for the treatment of Cu(II) rich effluents. Water Air Soil Pollut. 27(3–4):287–296. doi:10.1007/BF00649410.
  • Patra C, Suganya E, Sivaprakasam S, Krishnamoorthy G, Narayanasamy S. 2021. A detailed insight on fabricated porous chitosan in eliminating synthetic anionic dyes from single and multi-adsorptive systems with related studies. Chemosphere. 281:130706. doi:10.1016/j.chemosphere.2021.130706.
  • Ponnusami V, Vikram S, Srivastava SN. 2008. Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater. 152(1):276–286. doi:10.1016/j.jhazmat.2007.06.107.
  • Priyan V, Narayanasamy S. 2022. Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by corn starch nanoparticles: an ecotoxicological assessment. Environ Toxicol Pharmacol. 94:103930. doi:10.1016/j.etap.2022.103930.
  • Rahman SSA, Venkatachalam P, Karuppiah S. 2022. Cost-effective production of dextran using Saccharum officinarum juice (SOJ) as a potential feedstock: downstream processing and characterization. Biomass Conv Bioref. 12(11):4863–4875. doi:10.1007/s13399-020-00926-4.
  • Rambabu K, Banat F, Nirmala GS, Velu S, Monash P, Arthanareeswaran G. 2019. Activated carbon from date seeds for chromium removal in aqueous solution. Desalin Water Treatment. 156:267–277. doi:10.5004/dwt.2018.23265.
  • Rangabhashiyam S, Balasubramanian P. 2018. Adsorption behaviors of hazardous methylene blue and hexavalent chromium on novel materials derived from Pterospermum acerifolium shells. J Mol Liq. 254:433–445. doi:10.1016/j.molliq.2018.01.131.
  • Rangabhashiyam S, Balasubramanian P. 2019. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresour Technol Rep. 5:261–279. doi:10.1016/j.biteb.2018.07.009.
  • Rangabhashiyam S, Selvaraju N. 2015a. Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. J Mol Liq. 207:39–49. doi:10.1016/j.molliq.2015.03.018.
  • Rangabhashiyam S, Selvaraju N. 2015b. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J Taiwan Inst Chem Eng. 47:59–70. doi:10.1016/j.jtice.2014.09.034.
  • Rashid RA, Jawad AH, Mohd Ishak MAB, Kasim NN. 2018. FeCl3-activated carbon developed from coconut leaves: characterization and application for methylene blue removal. Sains Malays. 47(3):603–610. doi:10.17576/jsm-2018-4703-22.
  • Sebayang AH, Milano J, Shamsuddin AH, Alfansuri M, Silitonga AS, Kusumo F, Prahmana RA, Fayaz H, Zamri M. 2022. Modelling and prediction approach for engine performance and exhaust emission based on artificial intelligence of Sterculia foetida biodiesel. Energy Rep. 8:8333–8345. doi:10.1016/j.egyr.2022.06.052.
  • Selvakumar A, Rangabhashiyam S. 2019. Biosorption of rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis. Environ Pollut. 255(Pt 2):113291. doi:10.1016/j.envpol.2019.113291.
  • Sivaraman SN, Michael Anbuselvan P, Venkatachalam S, Shanmugam R, Selvasembian R. 2022. Waste tire particles as efficient materials towards hexavalent chromium removal: characterisation, adsorption behaviour, equilibrium, and kinetic modelling. Chemosphere. 295:133797. doi:10.1016/j.chemosphere.2022.133797.
  • Solgi M, Najib T, Ahmadnejad S, Nasernejad B. 2017. Synthesis and characterization of novel activated carbon from medlar seed for chromium removal: experimental analysis and modeling with artificial neural network and support vector regression. Resour Effic Technol. 3(3):236–248. doi:10.18799/24056529/2017/3/147.
  • Svoboda L, Licciardello N, Dvorský R, Bednář J, Henych J, Cuniberti G. 2020. Design and performance of novel self-cleaning g-C3N4/PMMA/PUR membranes. Polymers. 12(4):850. doi:10.3390/polym12040850.
  • Thabede PM, Shooto ND, Naidoo EB. 2020. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. S Afr J Chem Eng. 33:39–50. doi:10.1016/j.sajce.2020.04.002.
  • Tu B, Wen R, Wang K, Cheng Y, Deng Y, Cao W, Zhang K, Tao H. 2020. Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J Colloid Interface Sci. 560:649–658. doi:10.1016/j.jcis.2019.10.103.
  • Tuli FJ, Hossain A, Fazle KAKM, Tareq ARM, Mamun SMMA, Ullah AKMA. 2020. Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: a study of adsorption isotherm and kinetics. Environ Nanotechnol Monit Manag. 14:100354.
  • Ucun H, Kemal Bayhan Y, Kaya Y. 2008. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn. J Hazard Mater. 153(1–2):52–59. doi:10.1016/j.jhazmat.2007.08.018.
  • Vermeulen T, Quilici RE. 1970. Analytic driving-force relation for pore-diffusion kinetics in fixed-bed adsorption. Ind Eng Chem Fund. 9(1):179–180. doi:10.1021/i160033a031.
  • Zakaria R, Azimah Jamalluddin N, Abu Bakar MZ. 2021. Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal. Results Mater. 10:100183. doi:10.1016/j.rinma.2021.100183.
  • Zhang Z, Xu L, Liu Y, Feng R, Zou T, Zhang Y, Kang Y, Zhou P. 2021. Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: kinetic, equilibrium, and thermodynamic studies. Micropor Mesopor Mater. 315:110904. doi:10.1016/j.micromeso.2021.110904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.