151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Arbuscular mycorrhizal fungi improve growth and tolerance of Platycladus orientalis under lead stress

, , , &

References

  • Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Abayomi Sobowale SP, Olubode A, Mudathir R, Adebayo R, Adeoye S. 2021a. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere. 18:100325. doi:10.1016/j.rhisph.2021.100325.
  • Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Ridwan M. 2021b. Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil. J Plant Nutr. 44(11):1–16. doi:10.1080/01904167.2021.1871748.
  • Awoyemi OM, Adeleke EO, Dzantor EK. 2019. Arbuscular mycorrhizal fungi and exogenous glutathione mitigate coal fly ash (CFA)-induced phytotoxicity in CFA-contaminated soil. J Environ Manage. 237:449–456. doi:10.1016/j.jenvman.2019.02.103.
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161(2):559–566. doi:10.1016/0003-2697(87)90489-1.
  • Chakrabarty D, Datta SK. 2008. Micropropagation of gerbera: lipid peroxidation and antioxidant enzyme activities during acclimatization process. Acta Physiol Plant. 30(3):325–331. doi:10.1007/s11738-007-0125-3.
  • Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W. 2018. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with lanthanum and cadmium. Environ Pollut. 241:607–615. doi:10.1016/j.envpol.2018.06.003.
  • Cui G, Ai S, Chen K, Wang X. 2019. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicol Environ Saf. 171:231–239. doi:10.1016/j.ecoenv.2018.12.093.
  • Devoz PP, dos Reis MB, Gomes WR, Maraslis FT, Ribeiro DL, Antunes LMG, Batista BL, Grotto D, Reis RM, Barbosa F, et al. 2021. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere. 269:128758. doi:10.1016/j.chemosphere.2020.128758.
  • Fan Y, Xu Z, Huang Y, Wang T, Zheng S, DePasquale A, Brueckner C, Lei Y, Li B. 2020. Long-term continuous and real-time in situ monitoring of Pb(II) toxic contaminants in wastewater using solid-state ion selective membrane (S-ISM) Pb and pH auto-correction assembly. J Hazard Mater. 400:123299. doi:10.1016/j.jhazmat.2020.123299.
  • Foyer CH, Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28(8):1056–1071. doi:10.1111/j.1365-3040.2005.01327.x.
  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. 2014. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol. 204(3):609–619. doi:10.1111/nph.12949.
  • Gu HH, Zhou Z, Gao YQ, Yuan XT, Ai YJ, Zhang JY, Zuo WZ, Taylor AA, Nan SQ, Li FP. 2017. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. Int J Phytoremediation. 19(8):739–745. doi:10.1080/15226514.2017.1284751.
  • Guo B, Liu C, Lin YC, Li H, Li NY, Liu JL, Fu QL, Tong WN, Yu HP. 2021. Fruit extracts from Phyllanthus emblica accentuate cadmium tolerance and accumulation in Platycladus orientalis: a new natural chelate for phytoextraction. Environ Pollut. 280:116996.
  • Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. 2023. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. New Phytol. 857:159059. doi:10.1016/j.scitotenv.2022.159059.
  • Han X, Du X, Wu Y, Wei M, Gu Y, Aba X, Tang M, Zhang H. 2022. Foliar-applied potassium improved mycorrhizal Goji (Lycium barbarum L.) growth of the potassium free - compartment in a compartmented culture system. Sci Hortic. 293:. 10681.
  • Iyyappan J, Baskar G, Deepanraj B, Anand AV, Saravanan R, Awasthi MK. 2023. Promising strategies of circular bioeconomy using heavy metal phytoremediated plants – a critical review. Chemosphere. 313:137097. doi:10.1016/j.chemosphere.2022.137097.
  • Janeeshma E, Puthur JT. 2020. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol. 202(1):1–16. doi:10.1007/s00203-019-01730-z.
  • Ji DY, Wang Q, Lu TT, Ma HL, Chen XM. 2022. The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chem. 373(Pt B):131480. doi:10.1016/j.foodchem.2021.131480.
  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A. 2012. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 13(3):3145–3175. doi:10.3390/ijms13033145.
  • Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res. 92(4):486–488. doi:10.1016/S0953-7562(89)80195-9.
  • Kumar GNM, Knowles NR. 1993. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol. 102(1):115–124. doi:10.1104/pp.102.1.115.
  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants. 8(4):94. doi:10.3390/antiox8040094.
  • Leung HM, Wang ZW, Ye ZH, Yung KL, Peng XL, Cheung KC. 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a Review. Pedosphere. 23(5):549–563. doi:10.1016/S1002-0160(13)60049-1.
  • Liang RZ, Gu YG, Li HS, Han YJ, Niu J, Su H, Jordan RW, Man XT, Jiang SJ. 2023. Multi-index assessment of heavy metal contamination in surface sediments of the Pearl River estuary intertidal zone. Mar Pollut Bull. 186:114445. doi:10.1016/j.marpolbul.2022.114445.
  • Liao JR, Cai XY, Yang YX, Chen QB, Gao SP, Liu GL, Sun LX, Luo ZH, Lei T, Jiang MY. 2021. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. Chemosphere. 282:131089. doi:10.1016/j.chemosphere.2021.131089.
  • Majewska ML, Rola K, Zubek S. 2017. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza. 27(2):83–94. doi:10.1007/s00572-016-0729-9.
  • Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzciński P, Głuszek S, Lisek A, Wera-Bryl S, Rudnicka J. 2019. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza. 29(5):489–501. doi:10.1007/s00572-019-00905-2.
  • Ou C, Cheng W, Wang Z, Yao X, Yang S. 2023. Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. Ecotoxicol Environ Saf. 252:114619. doi:10.1016/j.ecoenv.2023.114619.
  • Perveen S, Parveen A, Saeed M, Arshad R, Zafar S. 2022. Interactive effect of glycine, alanine, and calcium nitrate Ca(NO3) on wheat (Triticum aestivum L.) under lead (Pb) stress. Environ Sci Pollut Res Int. 29(25):37954–37968. doi:10.1007/s11356-021-17348-y.
  • Prajapati P, Gupta P, Kharwar RN, Seth CS. 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. Int J Phytoremediation. 25(4):403–414. doi:10.1080/15226514.2022.2086215.
  • Qiao YL, Zhang Y, Xu SC, Yue SD, Zhang XM, Liu MJ, Sun LL, Jia XP, Zhou Y. 2022. Multi-leveled insights into the response of the eelgrass Zostera marina L to Cu than Cd exposure. Sci Total Environ. 845:157057. doi:10.1016/j.scitotenv.2022.157057.
  • Quan LT, Zhang JH, Wei QP, Wang Y, Qin C, Hu F, Chen YH, Shen ZG, Xia Y. 2021. Promotion of zinc tolerance, acquisition and translocation of phosphorus in Mimosa pudica L. mediated by arbuscular mycorrhizal fungi. Bull Environ Contam Toxicol. 106(3):507–515. doi:10.1007/s00128-021-03113-x.
  • Rahman I, Kode A, Biswas SK. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 1(6):3159–3165. doi:10.1038/nprot.2006.378.
  • Sharma JK, Kumar N, Singh NP, Santal AR. 2023. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front Plant Sci. 14:1076876. doi:10.3389/fpls.2023.1076876.
  • Tang HY, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao JQ. 2022. The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Front Plant Sci. 13:919166. doi:10.3389/fpls.2022.919166.
  • Wang C, Rong H, Zhang X, Shi W, Hong X, Liu W, Cao T, Yu X, Yu Q. 2020a. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. Chemosphere. 251:126347. doi:10.1016/j.chemosphere.2020.126347.
  • Wang LL, Yao YX, Wang JY, Cui JH, Wang XH, Li XM, Li YY, Ma LJ. 2023a. Metabolomics analysis reveal the molecular responses of high CO2 concentration improve resistance to Pb stress of Oryza sativa L. seedlings. Ecotox Environ Safe. 251:114515. doi:10.1016/j.ecoenv.2023.114515.
  • Wang Q, Lu H, Chen J, Jiang Y, Williams MA, Wu S, Li J, Liu J, Yang G, Yan C. 2020b. Interactions of soil metals with glomalin-related soil protein as soil pollution bioindicators in mangrove wetland ecosystems. Sci Total Environ. 709:136051. doi:10.1016/j.scitotenv.2019.136051.
  • Wang YJ, Zhang CY, Wang L, Zhao YH, Gao YF, Jia X. 2023b. Influence of arbuscular mycorrhizal fungi on low molecular weight soluble compounds in the rhizosphere soil of black locust seedlings grown in cadmium-contaminated soils under elevated CO2 scenarios. Plant Soil. 485:45–56. doi:10.1007/s11104-023-05885-z.
  • Wei J, Duan MQ, Li YP, Nwankwegu AS, Ji Y, Zhang J. 2019. Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci Rep. 9(1): 13100. doi:10.1038/s41598-019-49724-7
  • Wu H, Yang JJ, Fu W, Rillig MC, Cao ZJ, Zhao AH, Hao ZP, Zhang X, Chen BD, Han XG. 2023. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. New Phytol. 237(1):279–294. doi:10.1111/nph.18516.
  • Wu ZP, Wu WD, Zhou SL, Wu SH. 2016. Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi (Brassica chinensis L.). Pedosphere. 26(1):13–26. doi:10.1016/S1002-0160(15)60018-2.
  • Yang YR, Huang BT, Xu JZ, Li ZX, Tang ZH, Wu XF. 2022. Heavy metal domestication enhances beneficial effects of arbuscular mycorrhizal fungi on lead (Pb) phytoremediation efficiency of Bidens parviflora through improving plant growth and root Pb accumulation. Environ Sci Pollut Res Int. 29(22):32988–33001. doi:10.1007/s11356-022-18588-2.
  • Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res Int. 25(24):24338–24347. doi:10.1007/s11356-018-2487-z.
  • Zhang H, Ren W, Zheng Y, Li Y, Zhu M, Tang M. 2021a. Arbuscular mycorrhizal fungi increase Pb uptake of colonized and non-colonized Medicago truncatula root and deliver extra pb to colonized root segment. Microorganisms. 9(6):1203. doi:10.3390/microorganisms9061203.
  • Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol. 46(5):306–311. doi:10.1016/j.ejsobi.2010.05.006.
  • Zhang JX, Kirkham MB. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132(3):361–373. doi:10.1111/j.1469-8137.1996.tb01856.x.
  • Zhang X, Lou X, Zhang H, Ren W, Tang M. 2020. Effects of sodium sulfide application on the growth of Robinia pseudoacacia, heavy metal immobilization, and soil microbial activity in Pb-Zn polluted soil. Ecotoxicol Environ Saf. 197:110563. doi:10.1016/j.ecoenv.2020.110563.
  • Zhang X, Yu XX, Ding BB, Liu ZH, Jia GD. 2022. Water storage and use by Platycladus orientalis under different rainfall conditions in the rocky mountainous area of northern china. Forests. 13(11):1761. doi:10.3390/f13111761.
  • Zhang XY, Hu WT, Xie XA, Wu YB, Liang FY, Tang M. 2021b. Arbuscular mycorrhizal fungi promote lead immobilization by increasing the polysaccharide content within pectin and inducing cell wall peroxidase activity. Chemosphere. 267:128924. doi:10.1016/j.chemosphere.2020.128924.
  • Zhang XY, Zhang HQ, Lou X, Tang M. 2019. Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress. Environ Exp Bot. 164:10–19. doi:10.1016/j.envexpbot.2019.04.015.
  • Zhao FY, Liu W, Zhang SY. 2009. Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol. 51(10):942–950. doi:10.1111/j.1744-7909.2009.00865.x.
  • Zheng JD, Xie XG, Li CY, Wang HX, Yu YR, Huang BK. 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Int J Phytoremediat. 14:1–18. doi:10.1080/15226514.2023.2176466.
  • Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, Jing YX. 2020. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int J Phytoremediation. 22(10):1009–1018. doi:10.1080/15226514.2020.1725867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.