223
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Novel chitosan/citric acid modified pistachio shell/halloysite nanotubes cross-linked by glutaraldehyde biocomposite beads applied to methylene blue removal

ORCID Icon

References

  • Abate GY, Alene AN, Habte AT, Getahun DM. 2020. Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environ Syst Res. 9(1):1–13. doi:10.21203/rs.3.rs-35247/v4.
  • Açıkalın K, Karaca F, Bolat E. 2012. Pyrolysis of pistachio shell: effects of pyrolysis conditions and analysis of products. Fuel. 95:169–177. doi:10.1016/j.fuel.2011.09.037.
  • Afroze S, Sen TK. 2018. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229(7):1–50. doi:10.1007/s11270-018-3869-z.
  • Ahmed MJ, Dhedan SK. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 317:9–14. doi:10.1016/j.fluid.2011.12.026.
  • Arshad MS, Qaiser M, Mahmood K, Shoaib MH, Ameer N, Ramzan N, Hanif M, Abbas G. 2022. Chitosan/halloysite nanotubes microcomposites: a double header approach for sustained release of ciprofloxacin and its hemostatic effects. Int J Biol Macromol. 212:314–323. doi:10.1016/j.ijbiomac.2022.05.138.
  • Bahrudin NN, Nawi MA, Jawad AH, Sabar S. 2020. Adsorption characteristics and mechanistic study of immobilized chitosan-montmorillonite composite for methyl orange removal. J Polym Environ. 28(7):1901–1913. doi:10.1007/s10924-020-01734-7.
  • Banerjee S, Sharma GC, Chattopadhyaya MC, Sharma YC. 2014. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH). J Environ Chem Eng. 2(3):1870–1880. doi:10.1016/j.jece.2014.06.020.
  • Beigzadeh P, Moeinpour F. 2016. Fast and efficient removal of silver (I) from aqueous solutions using aloe vera shell ash supported Ni0. 5Zn0.5Fe2O4 magnetic nanoparticles. Trans Nonferrous Met Soc China. 26(8):2238–2246. doi:10.1016/S1003-6326(16)64341-8.
  • Biswas S, Rashid TU, Debnath T, Haque P, Rahman MM. 2020. Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. J Compos Sci. 4(1):16. doi:10.3390/jcs4010016.
  • Cestari AR, Vieira EF, Dos Santos AG, Mota JA, De Almeida VP. 2004. Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J Colloid Interface Sci. 280(2):380–386. doi:10.1016/j.jcis.2004.08.007.
  • Cheng C, Song W, Zhao Q, Zhang H. 2020. Halloysite nanotubes in polymer science: purification, characterization, modification and applications. Nanotechnol Rev. 9(1):323–344. doi:10.1515/ntrev-2020-0024.
  • Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B. 2016. Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal. Carbohydr Polym. 138:16–26. doi:10.1016/j.carbpol.2015.11.060.
  • Danish M, Ahmad T, Hashim R, Said N, Akhtar MN, Mohamad-Saleh J, Sulaiman O. 2018. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surf Interfac. 11:1–13. doi:10.1016/j.surfin.2018.02.001.
  • Du M, Guo B, Jia D. 2010. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 59(5):574–582. doi:10.1002/pi.2754.
  • Du Y, Zheng P. 2014. Adsorption and photodegradation of methylene blue on TiO 2-halloysite adsorbents. Korean J Chem Eng. 31(11):2051–2056. doi:10.1007/s11814-014-0162-8.
  • Fawzy MA, Gomaa M. 2021. Low-cost biosorption of Methylene Blue and Congo Red from single and binary systems using Sargassum latifolium biorefinery waste/wastepaper xerogel: an optimization and modeling study. J Appl Phycol. 33(1):675–691. doi:10.1007/s10811-020-02290-2.
  • Hamad HN, Idrus S. 2022. Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers. 14(4):783. doi:10.3390/polym14040783.
  • Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM. 2020. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol. 163:756–765. doi:10.1016/j.ijbiomac.2020.07.014.
  • Jyothi MS, Angadi VJ, Kanakalakshmi TV, Padaki M, Geetha BR, Soontarapa K. 2019. Magnetic nanoparticles impregnated, cross-linked, porous chitosan microspheres for efficient adsorption of methylene blue from pharmaceutical waste water. J Polym Environ. 27(11):2408–2418. doi:10.1007/s10924-019-01531-x.
  • Karaca S, Önal EÇ, Açışlı Ö, Khataee A. 2021. Preparation of chitosan modified montmorillonite biocomposite for sonocatalysis of dyes: parameters and degradation mechanism. Mater Chem Phys. 260:124125. doi:10.1016/j.matchemphys.2020.124125.
  • Kavci E, Erkmen J, Bingöl MS. 2021. Removal of methylene blue dye from aqueous solution using citric acid modified apricot stone. Chem Eng Commun. 210(2):165–180. doi:10.1080/00986445.2021.2009812.
  • Kurczewska J. 2022. Chitosan-montmorillonite hydrogel beads for effective dye adsorption. J Water Process Eng. 48:102928. doi:10.1016/j.jwpe.2022.102928.
  • Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN. 2015. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. J Chem Eng. 259:438–448. doi:10.1016/j.cej.2014.08.019.
  • Liu B, Wang D, Yu G, Meng X. 2013. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—a review. J Ocean Univ China. 12(3):500–508. doi:10.1007/s11802-013-2113-0.
  • Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH. 2017. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int J Biol Macromol. 98:233–239. doi:10.1016/j.ijbiomac.2017.01.119.
  • Moeinpour F, Soofivand F, Mohseni-Shahri FS. 2019. Controlled release of losartan from acid-and heat-treated halloysite nanotubes. Med Chem Res. 28(2):160–168. doi:10.1007/s00044-018-2273-y.
  • Mustafa I, Rahmi  , Ishmaturrahmi  . 2019. Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J. 144:397–402. doi:10.1016/j.microc.2018.09.032.
  • Naushad M, Ali Khan M, Abdullah Alothman Z, Rizwan Khan M, Kumar M. 2016. Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalin Water Treat. 57(34):15848–15861. doi:10.1080/19443994.2015.1074121.
  • Ngulube T, Gumbo JR, Masindi V, Maity A. 2019. Preparation and characterisation of high performing magnesite-halloysite nanocomposite and its application in the removal of methylene blue dye. J Mol Struct. 1184:389–399. doi:10.1016/j.molstruc.2019.02.043.
  • Oyarce E, Butter B, Santander P, Sánchez J. 2021. Polyelectrolytes applied to remove methylene blue and methyl orange dyes from water via polymer-enhanced ultrafiltration. J Environ Chem Eng. 9(6):106297. doi:10.1016/j.jece.2021.106297.
  • Park S, Oh Y, Yun J, Yoo E, Jung D, Oh KK, Lee SH. 2020. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose. 27(5):2757–2773. doi:10.1007/s10570-020-02974-5.
  • Parlayici Ş, Pehlivan E. 2019. Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic. J Analy Sci Technol. 10(1):1–8. doi:10.1186/s40543-019-0175-3.
  • Parlayıcı Ş, Pehlivan E. 2021. Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. Int J Phytoremediation. 23(1):26–40. doi:10.1080/15226514.2020.1788502.
  • Pehlivan E, Parlayıcı Ş. 2021. Fabrication of a novel biopolymer‐based nanocomposite (nanoTiO2‐chitosan‐plum kernel shell) and adsorption of cationic dyes. J Chem Technol Biotechnol. 96(12):3378–3387. doi:10.1002/jctb.6893.
  • Peng Q, Liu M, Zheng J, Zhou C. 2015. Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater. 201:190–201. doi:10.1016/j.micromeso.2014.09.003.
  • Pietraszek A, Karewicz A, Widnic M, Lachowicz D, Gajewska M, Bernasik A, Nowakowska M. 2019. Halloysite-alkaline phosphatase system—a potential bioactive component of scaffold for bone tissue engineering. Colloids Surf B Biointerfaces. 173:1–8. doi:10.1016/j.colsurfb.2018.09.040.
  • Pirhaji JZ, Moeinpour F, Dehabadi AM, Ardakani SAY. 2020. Synthesis and characterization of halloysite/graphene quantum dots magnetic nanocomposite as a new adsorbent for Pb (II) removal from water. J Mol Liq. 300:112345. doi:10.1016/j.molliq.2019.112345.
  • Santoso E, Ediati R, Kusumawati Y, Bahruji H, Sulistiono DO, Prasetyoko D. 2020. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater Today Chem. 16:100233. doi:10.1016/j.mtchem.2019.100233.
  • Şentürk İ, Alzein M. 2020. Adsorptive removal of basic blue 41 using pistachio shell adsorbent-Performance in batch and column system. Sustain Chem Pharm. 16:100254. doi:10.1016/j.scp.2020.100254.
  • Soldatkina L, Yanar M. 2021. Equilibrium, kinetic, and thermodynamic studies of cationic dyes adsorption on corn stalks modified by citric acid. Colloids and Interfaces. 5(4):52. doi:10.3390/colloids5040052.
  • Tahazadeh S, Karimi H, Mohammadi T, Emrooz HBM, Tofighy MA. 2021. Fabrication of biodegradable cellulose acetate/MOF-derived porous carbon nanocomposite adsorbent for methylene blue removal from aqueous solutions. J Solid State Chem. 299:122180. doi:10.1016/j.jssc.2021.122180.
  • Theydan SK, Ahmed MJ. 2012. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies. J Anal Appl Pyrolysis. 97:116–122. doi:10.1016/j.jaap.2012.05.008.
  • Tran TH, Le HH, Pham TH, Nguyen DT, La DD, Chang SW, Lee SM, Chung WJ, Nguyen DD. 2021. Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods. J Environ Chem Eng. 9(4):105362. doi:10.1016/j.jece.2021.105362.
  • Türkeş E, Sağ Açıkel Y. 2020. Synthesis and characterization of magnetic halloysite–chitosan nanocomposites: use in the removal of methylene blue in wastewaters. Int J Environ Sci Technol. 17(3):1281–1294. doi:10.1007/s13762-019-02550-w.
  • Wang H, Yuan X, Zeng G, Leng L, Peng X, Liao K, Peng L, Xiao Z. 2014. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Environ Sci Pollut Res Int. 21(19):11552–11564. doi:10.1007/s11356-014-3025-2.
  • Zandi-Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S. 2022a. Facile application of OH-ended triazinic dendrimer/halloysite nanotube for removal of methylene blue with a high capacity. Int J Environ Anal Chem. 1–14. doi:10.1080/03067319.2022.2094707.
  • Zandi-Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S. 2022b. Designing of hydroxyl terminated triazine-based dendritic polymer/halloysite nanotube as an efficient nano-adsorbent for the rapid removal of Pb (II) from aqueous media. J Mol Liq. 360:119407. doi:10.1016/j.molliq.2022.119407.
  • Zhou Y, Gu X, Zhang R, Lu J. 2014. Removal of aniline from aqueous solution using pine sawdust modified with citric acid and β-cyclo- dextrin. Ind Eng Chem Res. 53(2):887–894. doi:10.1021/ie403829s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.