373
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Microalgae biofilm system as an efficient tool for wastewater remediation and potential bioresources for pharmaceutical product production: an overview

ORCID Icon, &

References

  • Abd Ellatif Mohamed H. 2018. The role of microalgae in renewable energy production: challenges and opportunities. In: Muhammet T, Umur Ö, Ali I, editors. Marine Ecology. Rijeka: IntechOpen. pp. Ch. 12.
  • Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho S-H, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, et al. 2023. Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects. Environ Sci Ecotechnol. 13:100205. doi:10.1016/j.ese.2022.100205.
  • Akhtar N, Syakir Ishak MI, Bhawani SA, Umar K. 2021. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water. 13(19):2660. doi:10.3390/w13192660.
  • Aladesanmi OT, Oroboade JG, Osisiogu CP, Osewole AO. 2019. Bioaccumulation factor of selected heavy Metals in Zea mays. J Health Pollut. 9(24):191207. doi:10.5696/2156-9614-9.24.191207.
  • Alfvén T, Ekman AT, Awil H, Holmer H, Mia Ekström A, Preet R, Agardh A, Frielingsdorf Lundqvist H. 2020. [The 2030 Agenda for Sustainable Development – an important opportunity to improve global health]. Lakartidningen. 117:20037.
  • Alsenani F, Tupally KR, Chua ET, Eltanahy E, Alsufyani H, Parekh HS, Schenk PM. 2020. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J. 28(12):1834–1841. doi:10.1016/j.jsps.2020.11.010.
  • Babiak W, Krzemińska I. 2021. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: a review of factors affecting EPS synthesis and application in flocculation processes. Energies. 14(13):4007. doi:10.3390/en14134007.
  • Bae H, Lee JY, Yang C, Song G, Lim W. 2020. Fucoidan derived from Fucus vesiculosus inhibits the development of human ovarian cancer via the disturbance of calcium homeostasis, endoplasmic reticulum stress, and angiogenesis. Mar Drugs. 18(1):45.
  • Baghour M. 2019. Algal degradation of organic pollutants. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of Ecomaterials. Cham: Springer International Publishing. p. 565–586.
  • Balíková K, Vojtková H, Duborská E, Kim H, Matúš P, Urík M. 2022. Role of Exopolysaccharides of Pseudomonas in heavy metal removal and other remediation strategies. Polymers. 14(20):425. doi:10.3390/polym14204253.
  • Bashir I, Lone FA, Bhat RA, Mir SA, Dar ZA, Dar SA. 2020. Concerns and threats of contamination on aquatic ecosystems. In: Hakeem KR, Bhat RA, Qadri H, editors, Bioremediation and biotechnology: sustainable approaches to pollution degradation. Cham: Springer International Publishing. p. 1–26.
  • Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M. 2019. Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite. Front Microbiol. 10:e00592. doi:10.3389/fmicb.2019.00592.
  • Besemer K. 2015. Biodiversity, community structure and function of biofilms in stream ecosystems. Res Microbiol. 166(10):774–781. doi:10.1016/j.resmic.2015.05.006.
  • Bhuyar P, Rahim MHA, Maniam GP, Ramaraj R, Govindan N. 2020. Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Appl Sci. 2(11):1906. doi:10.1007/s42452-020-03698-8.
  • Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal HMN. 2018. Biosorption: an interplay between marine algae and potentially toxic elements – a review. Mar Drugs. 16(2):65. doi:10.3390/md16020065.
  • Bremner C, Cochrane TA, McGuigan P, Bello-Mendoza R. 2020. Removal of dissolved heavy metals from stormwater by filtration with granular recycled glass and mussel shell with and without microalgae biofilm. Environ Technol Innov. 18:100662. doi:10.1016/j.eti.2020.100662.
  • Burrell CJ, Howard CR, Murphy FA. 2017. Pathogenesis of virus infections. Fenner White’s Med Virol. 2017:77–104. doi:10.1016/B978-0-12-375156-0.00007-2.
  • Chan S, Khoo KS, Kit Wayne C, Ling T, Show P-L. 2022. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium – a review. Bioresour Technol. 344(Pt A):126159. doi:10.1016/j.biortech.2021.126159.
  • Cheah YT, Chan DJC. 2021. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered. 12(1):7577–7599. doi:10.1080/21655979.2021.1980671.
  • Cheng P, Wang Y, Liu T, Liu D. 2017. Biofilm attached cultivation of Chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production. Front Plant Sci. 8:1594. doi:10.3389/fpls.2017.01594.
  • Chojnacka K, Chojnacki A, Górecka H. 2005. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 59(1):75–84. doi:10.1016/j.chemosphere.2004.10.005.
  • Chugh M, Kumar L, Shah MP, Bharadvaja N. 2022. Algal Bioremediation of heavy metals: an insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus. 7:100129. doi:10.1016/j.nexus.2022.100129.
  • Ciempiel W, Czemierska M, Szymańska-Chargot M, Zdunek A, Wiącek D, Jarosz-Wilkołazka A, Krzemińska I. 2022. Soluble extracellular polymeric substances produced by Parachlorella kessleri and Chlorella vulgaris: biochemical characterization and assessment of their cadmium and lead sorption abilities. Molecules. 27(21):7153. doi:10.3390/molecules27217153.
  • Collin S, Baskar A, Geevarghese DM, Ali MNVS, Bahubali P, Choudhary R, Lvov V, Tovar GI, Senatov F, Koppala S, et al. 2022. Bioaccumulation of lead (Pb) and its effects in plants: a review. J Hazardous Mat Lett. 3:100064. doi:10.1016/j.hazl.2022.100064.
  • Costa OYA, Raaijmakers JM, Kuramae EE. 2018. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol. 9:e01636. doi:10.3389/fmicb.2018.01636.
  • Decho AW, Gutierrez T. 2017. Microbial Extracellular Polymeric Substances (EPSs) in ocean systems. Front Microbiol. 8:e00922. doi:10.3389/fmicb.2017.00922.
  • Dell’ Anno F, Rastelli E, Sansone C, Brunet C, Ianora A, Dell’ Anno A. 2021. Bacteria, Fungi and Microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the Omics Era. Microorganisms. 9(8):1695. doi:10.3390/microorganisms9081695.
  • Diep P, Mahadevan R, Yakunin AF. 2018. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol. 6:e00157. doi:10.3389/fbioe.2018.00157.
  • Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J. 2017. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J Hazard Mater. 330:127–134. doi:10.1016/j.jhazmat.2017.02.004.
  • Dubey S, Chen C-W, Haldar D, Tambat VS, Kumar P, Tiwari A, Singhania RR, Dong C-D, Patel AK. 2023. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. Environ Pollut. 317:120840. doi:10.1016/j.envpol.2022.120840.
  • El-Naggar NE, Hamouda RA, Mousa IE, Abdel-Hamid MS, Rabei NH. 2018. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci Rep. 8(1):13456. doi:10.1038/s41598-018-31660-7.
  • Falaise C, François C, Travers MA, Morga B, Haure J, Tremblay R, Turcotte F, Pasetto P, Gastineau R, Hardivillier Y, et al. 2016. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar Drugs. 14(9):159.
  • Filote C, Roșca M, Hlihor RM, Cozma P, Simion IM, Apostol M, Gavrilescu M. 2021. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: current practice. Processes. 9(10):1696. doi:10.3390/pr9101696.
  • Fortin N, Morales M, Nakagawa Y, Focht D, Deshusses M. 2001. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environ Microbiol. 3(6):407–416. doi:10.1046/j.1462-2920.2001.00206.x.
  • Fritzsche S, Blenk P, Christian J, Castiglione K, Becker AM. 2021. Inhibitory properties of crude microalgal extracts on the in vitro replication of cyprinid herpesvirus 3. Sci Rep. 11(1):23134. doi:10.1038/s41598-021-02542-2.
  • Fuentes E, Pérez-Velón D, Prieto B. 2022. Effects of changes in UV-B radiation levels on biofilm-forming organisms commonly found in cultural heritage surfaces. Environ Res. 214(Pt 4):114061. doi:10.1016/j.envres.2022.114061.
  • Garcia-Parra J, Fuentes-Grünewald C, Gonzalez D. 2022. Therapeutic potential of microalgae-derived bioactive metabolites is influenced by different large-scale culture strategies. Mar Drugs. 20(10):627.
  • Gauthier MR, Senhorinho GNA, Scott JA. 2020. Microalgae under environmental stress as a source of antioxidants. Algal Research. 52:102104. doi:10.1016/j.algal.2020.102104.
  • Goh PS, Lau WJ, Ismail AF, Samawati Z, Liang YY, Kanakaraju D. 2022. Microalgae-enabled wastewater treatment: a sustainable strategy for bioremediation of pesticides. Water. 15(1):70. doi:10.3390/w15010070.
  • Gómez Ramírez A, Enríquez-Ocaña L, Miranda-Baeza A, Esquivel B, López-Elías J, Martinez-Cordova LR. 2019. Biofilm-forming capacity of two benthic microalgae, Navicula incerta and Navicula sp., on three substrates (Naviculales: Naviculaceae). Revista de biologia Tropical. 67:599–607.
  • Guengerich FP. 2018. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 8(12):10964–10976. doi:10.1021/acscatal.8b03401.
  • Guengerich FP, Munro AW. 2013. Unusual cytochrome p450 enzymes and reactions. J Biol Chem. 288(24):17065–17073. doi:10.1074/jbc.R113.462275.
  • Guzzon A, Di Pippo F, Congestri R. 2019. Wastewater biofilm photosynthesis in photobioreactors. Microorganisms. 7(8):252. doi:10.3390/microorganisms7080252.
  • Hawrot-Paw M, Koniuszy A, Gałczyńska M, Zając G, Szyszlak-Bargłowicz J. 2019. Production of microalgal biomass using aquaculture wastewater as growth medium. Water. 12(1):106. doi:10.3390/w12010106.
  • Horvath RS. 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 36(2):146–155. doi:10.1128/br.36.2.146-155.1972.
  • Huang L, Jin Y, Zhou D, Liu L, Huang S, Zhao Y, Chen Y. 2022. A review of the role of Extracellular Polymeric Substances (EPS) in wastewater treatment systems. Int J Environ Res Pub Health. 19(19):12191. doi:10.3390/ijerph191912191.
  • Huang Y, Zheng Y, Li J, Liao Q, Fu Q, Xia A, Fu J, Sun Y. 2018. Enhancing microalgae biofilm formation and growth by fabricating microgrooves onto the substrate surface. Bioresour Technol. 261:36–43. doi:10.1016/j.biortech.2018.03.139.
  • Ibrahim HAH, Abou Elhassayeb HE, El-Sayed WMM. 2022. Potential functions and applications of diverse microbial exopolysaccharides in marine environments. J Genet Eng Biotechnol. 20(1):151. doi:10.1186/s43141-022-00432-2.
  • Ifeanyi MSA, Jeremiah A, Stephen OA, Sammy LK. 2022. Available technologies for wastewater treatment. In: Muharrem I, Olcay Kaplan I, editors. Wastewater treatment. Rijeka: IntechOpen. pp. Ch. 3.
  • Jun JY, Jung MJ, Jeong IH, Yamazaki K, Kawai Y, Kim BM. 2018. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against Dental Plaque Bacteria. Mar Drugs. 16(9):301.
  • Kammerscheit X, Chauvat F, Cassier-Chauvat C. 2019. First in vivo evidence that glutathione-S-transferase operates in photo-oxidative stress in cyanobacteria. Front Microbiol. 10:e01899. doi:10.3389/fmicb.2019.01899.
  • Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, Aljohani AA. 2022. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. Chemosphere. 308(Pt 3):136471. doi:10.1016/j.chemosphere.2022.136471.
  • Kamyab H, Din MFM, Hosseini SE, Ghoshal SK, Ashokkumar V, Keyvanfar A, Shafaghat A, Lee CT, Bavafa A, Majid MZA. 2016. Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Techn Environ Policy. 18(8):2513–2523. doi:10.1007/s10098-016-1212-1.
  • Kaplan D. 2013. Absorption and adsorption of heavy metals by microalgae. In: Amos R, Emeritus QH, editors. Handbook of microalgal culture: applied phycology and biotechnology. 2nd ed. USA: Wiley. p. 602–611. doi:10.1002/9781118567166.
  • Karch CP, Burkhard P. 2016. Vaccine technologies: from whole organisms to rationally designed protein assemblies. Biochem Pharmacol. 120:1–14. doi:10.1016/j.bcp.2016.05.001.
  • Khavari F, Saidijam M, Taheri M, Nouri F. 2021. Microalgae: therapeutic potentials and applications. Mol Biol Rep. 48(5):4757–4765. doi:10.1007/s11033-021-06422-w.
  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A. 2016. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci. 3:e00068. doi:10.3389/fmars.2016.00068.
  • Li L, Li J, Bai J, Zeng Q, Xia L, Zhang Y, Chen S, Xu Q, Zhou B. 2019. The effect and mechanism of organic pollutants oxidation and chemical energy conversion for neutral wastewater via strengthening reactive oxygen species. Sci Total Environ. 651(Pt 1):1226–1235. doi:10.1016/j.scitotenv.2018.09.302.
  • Li X, Wu S, Yang C, Zeng G. 2020a. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: a review. Bioresour Technol. 318:123858. doi:10.1016/j.biortech.2020.123858.
  • Li X, Yang C, Lin Y, Hu T, Zeng G. 2022. Effects of oxytetracycline and zinc ion on nutrient removal and biomass production via microalgal culturing in anaerobic digester effluent. Bioresour Technol. 346:126667. doi:10.1016/j.biortech.2021.126667.
  • Li X, Yang C, Zeng G, Wu S, Lin Y, Zhou Q, Lou W, Du C, Nie L, Zhong Y. 2020b. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research. 46:101804. doi:10.1016/j.algal.2020.101804.
  • Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. 2020c. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem. 295(3):833–849. doi:10.1016/S0021-9258(17)49939-X.
  • Liehr SK, Chen H-J, Lin S-H. 1994. Metals removal by algal biofilms. Water Sci Techn. 30(11):59–68. doi:10.2166/wst.1994.0546.
  • Lin L, Yang H, Xu X. 2022. Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci. 10:e880246. doi:10.3389/fenvs.2022.880246.
  • Liu XY, Hong Y. 2021. Microalgae-based wastewater treatment and recovery with biomass and value-added products: A brief review. Curr Pollut Rep. 7:227–245. doi:10.1007/s40726-021-00184-6.
  • Liu N, Skauge T, Landa Marbán D, Hovland B, Thorbjørnsen B, Radu F, Vik B, Baumann T, Bødtker G. 2019. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels. J Ind Microbio Biotechnol. 46(6):855–868.
  • Maeda K, Okuda Y, Enomoto G, Watanabe S, Ikeuchi M. 2021. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. Elife. 10:66538. doi:10.7554/eLife.66538.
  • Makhanya BN, Nyandeni N, Ndulini SF, Mthembu MS. 2021. Application of green microalgae biofilms for heavy metals removal from mine effluent. Phys Chem Earth Parts A/B/C. 124:103079. doi:10.1016/j.pce.2021.103079.
  • Mantzorou A, Ververidis F. 2019. Microalgal biofilms: a further step over current microalgal cultivation techniques. Sci Total Environ. 651(Pt 2):3187–3201. doi:10.1016/j.scitotenv.2018.09.355.
  • Martínez KA, Saide A, Crespo G, Martín J, Romano G, Reyes F, Lauritano C, Ianora A. 2022. Promising antiproliferative compound from the green microalga dunaliella tertiolecta against human cancer cells. Front Mar Sci. 9:778108. doi:10.3389/fmars.2022.778108.
  • Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, Wlodkowic D, Morrison P, Roddick F, Spangenberg G, et al. 2017. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels. 10(1):120. doi:10.1186/s13068-017-0798-9.
  • Monteiro C, Castro P, Malcata F. 2011. Microalga-mediated bioremediation of heavy metal–contaminated surface waters. Biomanagement of Metal-Contaminated Soils. 20:365–385.
  • Moreira JB, Vaz BD, Cardias BB, Cruz CG, Almeida AC, Costa JA, Morais MG. 2022. Microalgae polysaccharides: an alternative source for food production and sustainable agriculture. Polysaccharides. 3(2):441–457. doi:10.3390/polysaccharides3020027.
  • Mostafa SS. 2012. Microalgal biotechnology: prospects and applications. Plant Sci. 12:276–314.
  • Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. 2020. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 11:928.
  • Mustafa S, Bhatti HN, Maqbool M, Iqbal M. 2021. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: prospects, challenges and opportunities. J Water Process Eng. 41:102009. doi:10.1016/j.jwpe.2021.102009.
  • Mwandira W, Nakashima K, Kawasaki S, Arabelo A, Banda K, Nyambe I, Chirwa M, Ito M, Sato T, Igarashi T, et al. 2020. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci Rep. 10(1):21189. doi:10.1038/s41598-020-78187-4.
  • Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Olabi AG. 2022. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus. 7:100112. doi:10.1016/j.nexus.2022.100112.
  • Ohkubo K, Aburai N, Miyauchi H, Tsuzuki M, Abe K. 2017. CO2 fixation and lipid accumulation in biofilms of the aerial microalga Coccomyxa sp. KGU-D001 (Trebouxiophyceae). J Appl Phycol. 29(4):1745–1753. doi:10.1007/s10811-017-1123-5.
  • Orandi DS, Lewis D, Moheimani N. 2012. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol. 39(9):1321–1331. doi:10.1007/s10295-012-1142-9.
  • Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. 2022. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 13(4):10412–10453. doi:10.1080/21655979.2022.2056823.
  • Ozkan A, Berberoglu H. 2013. Physico-chemical surface properties of microalgae. Colloids Surf B Biointerfaces. 112:287–293. doi:10.1016/j.colsurfb.2013.08.001.
  • Priya M, Gurung N, Mukherjee K, Bose S. 2014. 23 – Microalgae in removal of heavy metal and organic pollutants from soil. In: Das S, editor. Microbial biodegradation and bioremediation. Oxford: Elsevier. p. 519–537.
  • Rajasulochana P, Preethy V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour-Effic Technol. 2(4):175–184. doi:10.1016/j.reffit.2016.09.004.
  • Rajendran A, Hu B. 2016. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures. Biotechnol Biofuels. 9(1):112. doi:10.1186/s13068-016-0533-y.
  • Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SMZ, Hossain MM. 2022. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv. 7:100168. doi:10.1016/j.envadv.2022.100168.
  • Rehman ZU, Vrouwenvelder JS, Saikaly PE. 2021. Physicochemical properties of extracellular polymeric substances produced by three bacterial isolates from Biofouled Reverse Osmosis Membranes. Front Microbiol. 12:668761. doi:10.3389/fmicb.2021.668761.
  • Rezayian M, Niknam V, Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae. Toxicol Rep. 6:1309–1313. doi:10.1016/j.toxrep.2019.10.001.
  • Ribeiro MCM, Salles TS, Moreira MF, Barbarino E, do Valle AF, Couto MAPG. 2022. Antiviral activity of microalgae extracts against Mayaro virus. Algal Research. 61:102577. doi:10.1016/j.algal.2021.102577.
  • Rongpipi S, Ye D, Gomez ED, Gomez EW. 2018. Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Front Plant Sci. 9:1894. doi:10.3389/fpls.2018.01894.
  • Roostaei J, Zhang Y, Gopalakrishnan K, Ochocki AJ. 2018. Mixotrophic Microalgae Biofilm: a Novel Algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Sci Rep. 8(1):12528. doi:10.1038/s41598-018-31016-1.
  • Sami Ullah B, Umara Q. 2021. Implications of sewage discharge on freshwater ecosystems. In: Tao Z, editor. Sewage. Rijeka: IntechOpen. pp. Ch. 6.
  • Sánchez-Bayo A, Morales V, Rodríguez R, Vicente G, Bautista LF. 2020. Cultivation of microalgae and cyanobacteria: effect of operating conditions on growth and biomass composition. Molecules. 25(12):2834. doi:10.3390/molecules25122834.
  • Sasakova N, Gregova G, Takacova D, Mojzisova J, Papajova I, Venglovsky J, Szaboova T, Kovacova S. 2018. Pollution of surface and ground water by sources related to agricultural activities. Front Sustain Food Syst. 2:e00042. doi:10.3389/fsufs.2018.00042.
  • Sattayawat P, Yunus IS, Noirungsee N, Mukjang N, Pathom-Aree W, Pekkoh J, Pumas C. 2021. Synthetic biology-based approaches for microalgal bio-removal of heavy metals from wastewater effluents. Front Environ Sci. 9:778260. doi:10.3389/fenvs.2021.778260.
  • Savvidou MG, Georgiopoulou I, Antoniou N, Tzima S, Kontou M, Louli V, Fatouros C, Magoulas K, Kolisis FN. 2023. Extracts from chlorella vulgaris protect mesenchymal stromal cells from oxidative stress induced by hydrogen peroxide. Plants. 12(2):361. doi:10.3390/plants12020361.
  • Schnurr PJ, Espie GS, Allen DG. 2013. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol. 136:337–344. doi:10.1016/j.biortech.2013.03.036.
  • Sharma P. 2022. Role and significance of biofilm-forming microbes in phytoremediation – a review. Environ Technol Innovat. 25:102182. doi:10.1016/j.eti.2021.102182.
  • Shen Y, Zhu W, Chen C, Nie Y, Lin X. 2016. Biofilm formation in attached microalgal reactors. Bioprocess Biosyst Eng. 39(8):1281–1288. doi:10.1007/s00449-016-1606-9.
  • Singh DV, Bhat RA, Upadhyay AK, Singh R, Singh DP. 2021. Microalgae in aquatic environs: a sustainable approach for remediation of heavy metals and emerging contaminants. Environ Technol Innov. 21:101340. doi:10.1016/j.eti.2020.101340.
  • Singh DV, Upadhyay AK, Singh R, Singh DP. 2022. Microalgal competence in urban wastewater management: phycoremediation and lipid production. Int J Phytoremediation. 24(8):831–841. doi:10.1080/15226514.2021.1979463.
  • Spain O, Plöhn M, Funk C. 2021. The cell wall of green microalgae and its role in heavy metal removal. Physiol Plant. 173(2):526–535. doi:10.1111/ppl.13405.
  • Sukačová K, Vícha D, Dušek J. 2020. Perspectives on microalgal biofilm systems with respect to integration into wastewater treatment technologies and phosphorus scarcity. Water. 12(8):2245. doi:10.3390/w12082245.
  • Syed Z, Sogani M, Rajvanshi J, Sonu K. 2022. Microbial biofilms for environmental bioremediation of heavy metals: a review. Appl Biochem Biotechnol. 194. doi:10.1007/s12010-022-04276-x.
  • Tiwari ON, Sasmal S, Kataria AK, Devi I. 2020. Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech. 10(5):221. doi:10.1007/s13205-020-02200-w.
  • Tobiszewski M, Namieśnik J. 2012. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ Sci Pollut Res Int. 19(6):1994–2006. doi:10.1007/s11356-012-0764-9.
  • Tong CY, Chang YS, Ooi BS, Chan DJC. 2021. Physico-chemistry and adhesion kinetics of algal biofilm on polyethersulfone (PES) membrane with different surface wettability. J Environ Chem Eng. 9(6):106531. doi:10.1016/j.jece.2021.106531.
  • Torres E. 2020. Biosorption: a review of the latest advances. Processes. 8(12):1584. doi:10.3390/pr8121584.
  • Touliabah HE, El-Sheekh MM, Ismail MM, El-Kassas H. 2022. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules. 27(3):1141. doi:10.3390/molecules27031141.
  • Ubando AT, Africa ADM, Maniquiz-Redillas MC, Culaba AB, Chen W-H, Chang J-S. 2021. Microalgal biosorption of heavy metals: a comprehensive bibliometric review. J Hazard Mater. 402:123431. doi:10.1016/j.jhazmat.2020.123431.
  • Ugya AY. 2023. How changing environments alter the microbial composition and ecological response in marine biofilms: a mini review. Egypt J Basic Appl Sci. 10(1):95–106. doi:10.1080/2314808X.2022.2154111.
  • Ugya AY, Ajibade FO, Hua X. 2021a. The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna. J Environ Manage. 295:113109. doi:10.1016/j.jenvman.2021.113109.
  • Ugya AY, Ari HA, Hua X. 2021b. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ecotoxicol Environ Saf. 221:112468. doi:10.1016/j.ecoenv.2021.112468.
  • Ugya AY, Imam TS, Li A, Ma J, Hua X. 2020. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem Ecol. 36(2):174–193. doi:10.1080/02757540.2019.1688308.
  • Ugya AY, Meguellati K, Aliyu AD, Abba A, Musa MA. 2022. Microplastic stress induce bioresource production and response in microalgae: a concise review. Environ Pollut Bioavailabil. 34(1):51–60. doi:10.1080/26395940.2022.2033138.
  • Ugya YA, Hasan DB, Tahir SM, Imam TS, Ari HA, Hua X. 2021. Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water. Int J Phytoremediation. 23(11):1175–1183. doi:10.1080/15226514.2021.1882934.
  • Upadhyay RK. 2014. Transendothelial transport and its role in therapeutics. Int Sch Res Notices. 2014:309404. doi:10.1155/2014/309404.
  • Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P t. 40(4):277–283.
  • Wang C, Tan Y, Zhu L, Zhou C, Yan X, Xu Q, Ruan R, Cheng P. 2022. The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal – a review. Algal Res. 68:102849. doi:10.1016/j.algal.2022.102849.
  • Wang Y, Jiang Z, Lai Z, Yuan H, Zhang X, Jia Y, Zhang X. 2021. The self-adaption capability of microalgal biofilm under different light intensities: photosynthetic parameters and biofilm microstructures. Algal Res. 58:102383. doi:10.1016/j.algal.2021.102383.
  • Wicker RJ, Kwon E, Khan E, Kumar V, Bhatnagar A. 2023. The potential of mixed-species biofilms to address remaining challenges for economically-feasible microalgal biorefineries: a review. Chem Eng J. 451:138481. doi:10.1016/j.cej.2022.138481.
  • Xiao X, Li W, Jin M, Zhang L, Qin L, Geng W. 2023. Responses and tolerance mechanisms of microalgae to heavy metal stress: a review. Mar Environ Res. 183:105805. doi:10.1016/j.marenvres.2022.105805.
  • Yaakob MA, Mohamed R, Al-Gheethi A, Aswathnarayana Gokare R, Ambati RR. 2021. Influence of Nitrogen and Phosphorus on Microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 10(2):393. doi:10.3390/cells10020393.
  • Yesankar PJ, Qureshi A, Purohit HJ. 2022. Chapter 22 – biofilm-mediated biodegradation of hydrophobic organic compounds in the presence of metals as co-contaminants. In: Das S, Dash HR, editors. Microbial biodegradation and bioremediation (Second Edition). Amsterdam: Elsevier, p. 441–460.
  • Yi Tong C, Derek C. 2022. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. J Appl Microbiol. 132(5):3490–3514.
  • Younas F, Mustafa A, Farooqi ZUR, Wang X, Younas S, Mohy-Ud-Din W, Ashir Hameed M, Mohsin Abrar M, Maitlo AA, Noreen S, et al. 2021. Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water. 13(2):215. doi:10.3390/w13020215.
  • Yu Q, Fein J. 2016. Sulfhydryl binding sites within bacterial extracellular polymeric substances. Environ Sci Technol. 50(11):5498–5505. doi:10.1021/acs.est.6b00347.
  • Zeng W, Chen K, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. 2023. Three-dimensional porous biofilm photobioreactor with light-conducting frameworks for high-efficiency microalgal growth. Algal Research. 69:102942. doi:10.1016/j.algal.2022.102942.
  • Zhang Q, Liu C, Li Y, Yu Z, Chen Z, Ye T, Wang X, Hu Z, Liu S, Xiao B, et al. 2017. Cultivation of algal biofilm using different lignocellulosic materials as carriers. Biotechnol Biofuels. 10(1):115. doi:10.1186/s13068-017-0799-8.
  • Zou X, Xu K, Chang W, Qu Y, Li Y. 2021. A novel microalgal biofilm reactor using walnut shell as substratum for microalgae biofilm cultivation and lipid accumulation. Renew Energy. 175:676–685. doi:10.1016/j.renene.2021.04.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.