71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Co-culture between Miscanthus x giganteus and Trifolium repens L. to enhance microbial activity, biomass and density in a PAH contaminated technosol

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • AFNOR. 2011. NF EN ISO 16072. Soil quality - Laboratory methods for determination of microbial soil respiration.
  • AFNOR. 2015. NF EN ISO 11268-1. Soil quality - Effects of pollutants on earthworms- Part 1 : Determination of acute toxicity to Eisenia fetida.
  • Al Souki KS, Louvel B, Douay F, Pourrut B. 2017. Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: ex situ experiment. Appl Soil Ecol. 115:44–52. doi: 10.1016/j.apsoil.2017.03.002.
  • Baudoin E, Benizri E, Guckert A. 2003. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem. 35(9):1183–1192. doi: 10.1016/S0038-0717(03)00179-2.
  • Bever JD, Platt TG, Morton ER. 2012. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 66:265–283. doi: 10.1146/annurev-micro-092611-150107.
  • Bian F, Zhong Z, Zhang X, Yang C. 2017. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environ Sci Pollut Res Int. 24(35):27244–27253. doi: 10.1007/s11356-017-0326-2.
  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P. 2007. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut. 147(3):546–553. doi: 10.1016/j.envpol.2006.10.013.
  • Bispo A, Cluzeau D, Creamer R, Dombos M, Graefe U, Krogh P, Sousa J, Peres G, Rutgers M, Winding A, et al. 2009. Indicators for monitoring soil biodiversity. Integr Environ Assess Manag. 5(4):717–719. doi: 10.1897/IEAM-2009-064.1.
  • Cébron A, Norini M-P, Beguiristain T, Leyval C. 2008. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods. 73(2):148–159. doi: 10.1016/j.mimet.2008.01.009.
  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E. 2005. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environ Sci Pollut Res Int. 12(1):34–48. doi: 10.1065/espr2004.08.213.
  • Gao Y, Miao C, Xia J, Mao L, Wang Y, Zhou P. 2012. Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Front Environ Sci Eng. 6(2):213–223. doi: 10.1007/s11783-011-0345-z.
  • Garbisu C, Alkorta I, Kidd P, Epelde L, Mench M. 2020. Keep and promote biodiversity at polluted sites under phytomanagement. Environ Sci Pollut Res Int. 27(36):44820–44834. doi: 10.1007/s11356-020-10854-5.
  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176(1):20–30. doi: 10.1016/j.plantsci.2008.09.014.
  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, et al. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 6:6707. doi: 10.1038/ncomms7707.
  • Laval-Gilly P, Henry S, Mazziotti M, Bonnefoy A, Comel A, Falla J. 2017. Miscanthus x giganteus composition in metals and potassium after culture on polluted soil and its use as biofuel. Bioenerg Res. 10(3):846–852. doi: 10.1007/s12155-017-9846-3.
  • Lewandowski I, Heinz A. 2003. Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron. 19(1):45–63. doi: 10.1016/S1161-0301(02)00018-7.
  • Lowther WL. 1975. Pelleting materials for oversown clover. New Zeal J Exp Agr. 3(2):121–125. doi: 10.1080/03015521.1975.10425787.
  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon J, Soulas G, Catroux G. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol. 67(5):2354–2359. doi: 10.1128/AEM.67.5.2354-2359.2001.
  • Mazziotti M, Henry S, Laval-Gilly P, Bonnefoy A, Falla J. 2018. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils. Folia Microbiol (Praha). 63(1):85–92. doi: 10.1007/s12223-017-0530-y.
  • Meng L, Qiao M, Arp HPH. 2011. Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono- and mixed cultures. J Soils Sediments. 11(3):482–490. doi: 10.1007/s11368-010-0319-y.
  • Muyzer G, Waal E d, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 59(3):695–700. doi: 10.1128/aem.59.3.695-700.1993.
  • Nebeská D, Trögl J, Ševců A, Špánek R, Marková K, Davis L, Burdová H, Pidlisnyuk V. 2021. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicol Environ Saf. 224:112630. doi: 10.1016/j.ecoenv.2021.112630.
  • Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs H-W. 1999. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron. 11(3-4):301–309. doi: 10.1016/S1161-0301(99)00031-3.
  • Newbould P, Rangeley A. 1984. Effect of lime, phosphorus and mycorrhizal fungi on growth, nodulation and nitrogen fixation by white clover (Trifolium repens) grown in UK hill soils. Plant Soil. 76(1-3):105–114. doi: 10.1007/BF02205571.
  • Nsanganwimana F, Pourrut B, Mench M, Douay F. 2014. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manage. 143:123–134. doi: 10.1016/j.jenvman.2014.04.027.
  • Schneider A, Huyghe C. 2015. Les légumineuses pour des systèmes agricoles et alimentaires durables. éditions Quae. doi: 10.35690/978-2-7592-2335-0.
  • Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernars K. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol. 65(6):2614–2621. doi: 10.1128/AEM.65.6.2614-2621.1999.
  • Técher D, Laval-Gilly P, Henry S, Bennasroune A, Formanek P, Martinez-Chois C, D’Innocenzo M, Muanda F, Dicko A, Rejšek K, et al. 2011. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: an in vitro study. Sci Total Environ. 409(20):4489–4495. doi: 10.1016/j.scitotenv.2011.06.049.
  • Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 379(6567):718–720. doi: 10.1038/379718a0.
  • Vainio EJ, Hantula J. 2000. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res. 104(8):927–936. doi: 10.1017/S0953756200002471.
  • Vergara Cid C, Pignata ML, Rodriguez JH. 2020. Effects of co-cropping on soybean growth and stress response in lead-polluted soils. Chemosphere. 246:125833. doi: 10.1016/j.chemosphere.2020.125833.
  • Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A, Gauthier-Moussard C, Lenain J-F, Vernay P, Munch JC, Pichon M. 2013. Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. J Geochem Explor. 126-127:78–84. doi: 10.1016/j.gexplo.2013.01.001.
  • Wechtler L, Henry S, Falla J, Walderdorff L, Bonnefoy A, Laval-Gilly P. 2020. Polycyclic aromatic hydrocarbons (PAHs) dissipation from a contaminated technosol composed of dredged sediments with Miscanthus x giganteus and Trifolium repens L. in mono- and co-culture. J Soils Sediments. 20(7):2893–2902. doi: 10.1007/s11368-020-02648-6.
  • Wechtler L, Henry S, Malladi S, Bonnefoy A, Falla-Angel J, Laval-Gilly P. 2022. Influence of Miscanthus x giganteus and Trifolium repens L. on microflora and PAH-degrading-bacteria in contaminated technosol. J Soils Sediments. 22(1):208–217. doi: 10.1007/s11368-021-03055-1.
  • Wei S, Pan S. 2010. Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. J Soils Sediments. 10(5):886–894. doi: 10.1007/s11368-010-0216-4.
  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ. 2006. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ. 363(1-3):206–215. doi: 10.1016/j.scitotenv.2005.05.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.