143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of arbuscular mycorrhizal symbiosis, Funneliformis mosseae, on rosemary phytoremediation ability under urban traffic

, , &

Reference

  • Aazami J, Moradpoure H, Kianimehr NA. 2017. Review of biotic indices for heavy metals in polluted environment. Hum Environ J. 15(40):13–24.
  • Allen HE, Huang CP, Bailey GW, Bowers AR. 1994. Metal speciation and contamination of soil. Boca Raton (FL): CRC Press.
  • Allison L, Moodie C. 1965. Carbonate. In: Norman AG, editor. Methods of soil analysis: part 2 chemical and microbiological properties. Madison (WI): American Society of Agronomy, Inc. p. 1379–1396.
  • Audet P. 2014. Arbuscular mycorrhizal fungi and metal phytoremediation: ecophysiological complementarity in relation to environmental stress. In: Ahmad P, Rasool S, editors. Emerging technologies and management of crop stress tolerance. San Diego: Academic Press. p. 133–160.
  • Augé RM, Schekel KA, Wample RL. 1986. Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress. Plant Physiol. 82(3):765–770. doi: 10.1104/pp.82.3.765.
  • Bouyoucos GJ. 1962. Hydrometer method improved for making particle size analyses of soils1. Agron J. 54(5):464–465. doi: 10.2134/agronj1962.00021962005400050028x.
  • Chapman HD, Pratt PF. 1962. Methods of analysis for soils, plants and waters. Soil Sci. 93(1):68. doi: 10.1097/00010694-196201000-00015.
  • Chapman HD. 1965. Cation‐exchange capacity. In: Norman AG, editor. Methods of soil analysis: part 2 chemical and microbiological properties. Madison (WI): American Society of Agronomy, Inc. p. 891–901.
  • Chaturvedi R, Favas PJ, Pratas J, Varun M, Paul MS. 2018. Effect of Funneliformis mosseae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal (loid) stress. Int J Phytoremediation. 20(9):885–894. doi: 10.1080/15226514.2018.1438360.
  • Chaturvedi R, Favas PJ, Pratas J, Varun M, Paul MS. 2021. Harnessing Pisum sativum–Funneliformis mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. Int J Phytoremediation. 23(3):279–290. doi: 10.1080/15226514.2020.1812507.
  • Chen B, Nayuki K, Kuga Y, Zhang X, Wu S, Ohtomo R. 2018. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes Environ. 33(3):257–263. doi: 10.1264/jsme2.ME18010.
  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, et al. 2017. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 8:2516. 19doi: 10.3389/fmicb.2017.02516.
  • Clark RA, Zeto S. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutri. 23(7):867–902. doi: 10.1080/01904160009382068.
  • Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88(11):1707–1719. doi: 10.1016/j.biochi.2006.07.003.
  • Dong Y, Zhu YG, Smith FA, Wang Y, Chen B. 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut. 155(1):174–181. doi: 10.1016/j.envpol.2007.10.023.
  • Esnouf A, Latrille E, Steyer JP, Helias A. 2018. Representativeness of environmental impact assessment methods regarding life cycle inventories. Sci Total Environ. 621:1264–1271. doi: 10.1016/j.scitotenv.2017.10.102.
  • Garg N, Aggarwal N. 2012. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul. 66(1):9–26. doi: 10.1007/s10725-011-9624-8.
  • Gonzalez-Chavez C, Harris P, Dodd J, Meharg AA. 2002. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol. 155(1):163–171. doi: 10.1046/j.1469-8137.2002.00430.x.
  • González-Chávez MDCA, Carrillo-González R, Cuellar-Sánchez A, Delgado-Alvarado A, Suárez-Espinosa J, Ríos-Leal E, Solís-Domínguez FA, Maldonado-Mendoza IE. 2019. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. Sci Total Environ. 650(Pt 2):3134–3144. doi: 10.1016/j.scitotenv.2018.10.031.
  • Hadi P, Gao P, Barford JP, McKay G. 2013. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J Hazard Mater. 252–253:166–170. doi: 10.1016/j.jhazmat.2013.02.037.
  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SL, Rillig MC. 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem. 77:252–260. doi: 10.1016/j.soilbio.2014.06.012.
  • He Y, Yang R, Lei G, Li B, Jiang M, Yan K, Zu Y, Zhan F, Li Y. 2020. Arbuscular mycorrhizal fungi reduce cadmium leaching from polluted soils under simulated heavy rainfall. Environ Pollut. 263(Pt B):114406. doi: 10.1016/j.envpol.2020.114406.
  • Hou S, Zheng N, Tang L, Ji X, Li Y, Hua X. 2019. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ Int. 128:430–437. doi: 10.1016/j.envint.2019.04.046.
  • Huang X, Wang L, Zhu S, Ho SH, Wu J, Kalita PK, Ma F. 2018. Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotoxicol Environ Saf. 149:43–50. doi: 10.1016/j.ecoenv.2017.11.011.
  • Jafari M, Jahantab E, Moameri M. 2020. Investigation of remediation of contaminated soils with heavy metals using Helianthus Annuus L. Plant J Environ Sci Technol. 22:1–14. doi: 10.22034/jest.2021.24665.3373.
  • Janoušková M, Pavlíková D, Vosátka M. 2006. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere. 65(11):1959–1965. doi: 10.1016/j.chemosphere.2006.07.007.
  • Joner E, Leyval C. 1997. Uptake of 109Cd by roots and hyphae of a Funneliformis mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 135(2):353–360. doi: 10.1046/j.1469-8137.1997.00633.x
  • Kanwal S, Bano A, Malik R. 2015. Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil. AJPS. 06(18):2906–2923. doi: 10.4236/ajps.2015.618287.
  • Kapoor R, Evelin H, Mathur P, Giri B. 2013. Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Singh Gill S, editors, Plant acclimation to environmental stress. New York (NY): Springer. p. 359–401. doi: 10.1007/978-1-4614-5001-6_14.
  • Kirchmann H, Mattsson L, Eriksson J. 2009. Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program. Environ Geochem Health. 31(5):561–571. doi: 10.1007/s10653-009-9251-8.
  • Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M. 2004. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry. 63(1–2):121–124. doi: 10.1016/j.bioelechem.2003.09.020.
  • Koller S, Holland V, Brüggemann W. 2013. Effects of drought stress on the evergreen Quercus ilex L., the deciduous Q. robur L. and their hybrid Q.× turneri Willd. Photosynt. 51(4):574–582. doi: 10.1007/s11099-013-0058-6.
  • Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 7(3):139–153. doi: 10.1007/s005720050174.
  • Li H, Smith FA, Dickson S, Holloway RE, Smith SE. 2008. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol. 178(4):852–862. doi: 10.1111/j.1469-8137.2008.02410.x.
  • Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y. 2015. Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLOS One. 10(4):e0124304. 17 doi: 10.1371/journal.pone.0124304.
  • Lindsay WL, Norvell W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC. 2013. Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ. 463–464:530–540. doi: 10.1016/j.scitotenv.2013.06.064.
  • Martínez-García LB, De Deyn GB, Pugnaire FI, Kothamasi D, van der Heijden MGA. 2017. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob Chang Biol. 23(12):5228–5236. doi: 10.1111/gcb.13785.
  • Mattina MI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124(3):375–378. doi: 10.1016/s0269-7491(03)00060-5.
  • McBride MB. 1994. Chemisorption and precipitation of inorganic ions. In: McBride MB, editor. Environmental chemistry of soils. Ithaca (NY): Cornell University. p. 121–168.
  • Miransari M. 2017. Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS, editor. Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer. p. 147–161
  • Mishra A, Bhattacharya A, Mishra N. 2019. Mycorrhizal symbiosis: an effective tool for metal bioremediation. In: Singh JS, editor. New and future developments in microbial biotechnology and bioengineering. Amsterdam (NL): Elsevier. p. 113–128.
  • Mitra D, Uniyal N, Panneerselvam P, Senapati A, Ganeshamurthy AN, VaD J. 2020. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Inter J Life Sci Appl Sci. 1:1–10.
  • Moghadam HRT. 2016. Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat. Pesqui Agropecu Trop. 46(1):9–18. doi: 10.1590/1983-40632016v4638946.
  • O’Dell RE, Claassen VP. 2011. Restoration and revegetation of harsh soils. Berkeley (USA): University of California Press.
  • Olsen SR, Cole CV, Watanabe FS. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): US Government Printing Office. USDA Circular No. 939.
  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H. 2005. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol. 162(6):634–649. doi: 10.1016/j.jplph.2004.09.014.
  • Pescod MB. 1992. Wastewater treatment and use in agriculture. Rome, Italy: FAO. FAO irrigation and drainage paper no. 47.
  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P. 2010. Symbiotic role of Funneliformis mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater. 177(1-3):465–474. doi: 10.1016/j.jhazmat.2009.12.056.
  • Rabie GH. 2005. Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol. 4:332–345.
  • Shehata AM, Nosir WSE, Ahmed AF. 2019. Using some biofertilizers treatments to promote growth and oil yield of rosemary plant (Rosmarinus officinalis L.) Grown in sandy calcareous soil. Future J Biol. 3:26–33.
  • Singh PC, Srivastava S, Shukla D, Bist V, Tripathi P, Anand V, Arkvanshi SK, Kaur J, Srivastava S. 2018. Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad R, editor. Mycoremediation and environmental sustainability. Vol. 2, Cham: Springer. p. 351–381.
  • Singh RP, Dhania G, Sharma A, Jaiwal PK. 2007. Biotechnological approaches to improve phytoremediation efficiency for environment contaminants. In: Sing SN, Tripathi RD, editors. Environmental bioremediation technologies. Springer. p. 223–258. doi: 10.1007/978-3-540-34793-4_10.
  • Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. New York (NY): Academic press.
  • Souza LA, Andrade SA, Souza SC, Schiavinato MA. 2013. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Int J Phytoremediation. 15(5):465–476. doi: 10.1080/15226514.2012.716099.
  • Takács T, Vörös I. 2003. Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agron Hung. 51(3):347–354. doi: 10.1556/AAgr.51.2003.3.13.
  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot. 60(9):2677–2688. doi: 10.1093/jxb/erp119.
  • Wahid A, Arshad M, Farooq M. 2010. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. In: Lichtfouse E, editor. Organic farming, pest control and remediation of soil pollutants: organic farming, pest control and remediation of soil pollutants. sustainable agriculture reviews. Vol. 1. Dordrecht: Springer. p. 371–403.
  • Walkley A, Black LA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 16(5):299–363. doi: 10.1007/s00572-005-0033-6.
  • Wang F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications. Crit Rev Environ Sci Technol. 47(20):1901–1957. doi: 10.1080/10643389.2017.1400853.
  • Wang Y, Huang J, Gao Y. 2012. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLOS One. 7(11):e48669. doi: 10.1371/journal.pone.0048669.
  • Waranusantigul. 2009. Phytoremediation potential of lead by Buddleja sp. and effects of its rhizobacteria on metal uptake [dissertation]. Thailand: Mahidol University.
  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int. 31(5):755–762. doi: 10.1016/j.envint.2005.02.004.
  • Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci. 16:722–729. doi: 10.1016/j.proenv.2012.10.099.
  • Yousaf B, Liu G, Wang R, Imtiaz M, Zia-Ur-Rehman M, Munir MA, Niu Z. 2016. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res Int. 23(22):22443–22453. doi: 10.1007/s11356-016-7449-8.
  • Zafarzadeh A, Rahimzadeh H, Mahvi AH. 2018. Health risk assessment of heavy metals in vegetables in an endemic esophageal cancer region in Iran. Health Scope. 7(3):e12340. doi: 10.5812/jhealthscope.12340.
  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP. 2015. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol. 49(2):750–759. doi: 10.1021/es5047099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.