760
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enzyme activities and heavy metal interactions in calcareous soils under different land uses

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Allison LE, Moodie CE. 1958. Carbonate. In: Black, CA, editor. Metods of soils analysis. Part 2. Agronomy 9. Madison, Wisconson: American Society of Argonomy. p. 1379–1400.
  • Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, Cornejo P, Kuzyakov Y. 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ. 737:139744. doi: 10.1016/j.scitotenv.2020.139744.
  • Azouzi R, Charef A, Hamzaoui AH. 2015. Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environ Earth Sci. 74(4):2967–2980. doi: 10.1007/s12665-015-4328-4.
  • Baethgen WE, Alley MM. 1989. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant Anal. 20(9–10):961–969. doi: 10.1080/00103628909368129.
  • Bouyoucos GJ. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. J Agron. 43(9):434–438. doi: 10.2134/agronj1951.00021962004300090005x.
  • Bremner JM. 1965. Methods of soil analysis. Part II. Chemical and microbiological properties. In: Black, CA, editor. Metods of soils analysis. Part 2. Agronomy 9. Madison, Wisconson: American Society of Argonomy. p. 1379–1400.
  • Bro R, Smilde AK. 2014. Principal component analysis. Anal Methods. 6(9):2812–2831. doi: 10.1039/C3AY41907J.
  • Chen YP, Liu Q, Liu YJ, Jia FA, He XH. 2014. Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci Rep. 4(1):4287. doi: 10.1038/srep04287.
  • Chen X, Chen HY, Searle EB, Chen C, Reich PB. 2020. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat Sustain. 4(3):225–232. doi: 10.1038/s41893-020-00641-y.
  • Dick WA. 2011. Development of a soil enzyme reaction assay. In: Dick RP, editor. Methods of soil enzymology. SSSA Book Series No. 9. Madison (WI): Soil Science Society of America. p. 71–84.
  • Enya O, Heaney N, Iniama G, Lin C. 2020. Effects of heavy metals on organic matter decomposition in inundated soils: microcosm experiment and field examination. Sci Total Environ. 724:138223. doi: 10.1016/j.scitotenv.2020.138223.
  • Fang Y, Cao X, Zhao L. 2012. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environ Sci Pollut Res. 19(5):1659–1667. doi: 10.1007/s11356-011-0674-2.
  • Florea AM, Büsselberg D. 2006. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals. 19(4):419–427. doi: 10.1007/s10534-005-4451-x.
  • Gadd GM, Griffiths AJ. 1977. Microorganisms and heavy metal toxicity. Microb Ecol. 4(4):303–317. doi: 10.1007/BF02013274.
  • Garau G, Porceddu A, Sanna M, Silvetti M, Castaldi P. 2019. Municipal solid wastes as a resource for environmental recovery: ımpact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotoxicol Environ Saf. 174:445–454. doi: 10.1016/j.ecoenv.2019.03.007.
  • Gil-Sotres F, Trasar-Cepeda C, Leiro MC, Seoane S. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem. 37(5):877–887. doi: 10.1016/j.soilbio.2004.10.003.
  • Hanumanth Kumar G, Pramoda Kumari J. 2015. Heavy metal lead influative toxicity and its assessment in phytoremediating plants—a review. Water Air Soil Pollut. 226(10):324–335. doi: 10.1007/s11270-015-2547-7.
  • Helmke PA, Sparks DL. 1996. Lithium, sodium, potassium, rubidiumand calcium. In: Sparks DL, editors. Methods of soil analysis part 3 chemical methods. SSSA Book Series No. 5. Madison (WI): Soil Science Society of America. p. 551–574.
  • Hinojosa MB, Carreira JA, García-Ruíz R, Dick RP. 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol Biochem. 36(10):1559–1568. doi: 10.1016/j.soilbio.2004.07.003.
  • Hutchinson GL, Viets FG. 1969. Nitrogen enrichment of surface water by absorption of ammonia volatilized from cattle feedlots. Science. 166(3904):514–515. doi: 10.1126/science.166.3904.5.
  • IUSS. 2014. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Rome: FAO. World Soil Resources Reports No. 106.
  • Jackson MC. 1962. Soil chemical analysis. Englewood Cliffs (NJ): Prentice Hall Inc.
  • Jakubus M, Graczyk M. 2020. Microelement variability in plants as an effect of sewage sludge compost application assessed by different statistical methods. Agron. 10(5):642. doi: 10.3390/agronomy10050642.
  • Jaworska H, Lemanowicz J. 2019. Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic. Sci Rep. 9(1):19981. doi: 10.1038/s41598-019-56418-7.
  • Johnson JL, Temple KL. 1964. Some variables affecting the measurement of catalase activit in soil. Soil Sci Soc Am J. 28(2):207–209. doi: 10.2136/sssaj1964.03615995002800020024x.
  • Kloke A. 1979. Contents of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil. Paper Presented at United Nations-ECE Symp, on Effect of Air-Borne. Polltion on Vegetation, Warsaw, August 20. p. 192.
  • Kunito T, Saeki K, Goto S, Hayashi H, Oyaizu H, Matsumoto S. 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour Technol. 79(2):135–146. doi: 10.1016/S0960-8524(01)00047-5.
  • Le S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. J Stat Soft. 25(1):1–18. doi: 10.18637/jss.v025.i01.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu P, Yang YS, Xu GD, Fang YH, Yang YA, Kalin RM. 2005. The effect of molybdenum and boron in soil on the growth and photosynthesis of three soybean varieties. Plant Soil Environ. 51(5):197–205. doi: 10.17221/3574-PSE.
  • McGee CF, Storey S, Clipson N, Doyle E. 2017. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. 26(3):449–458. doi: 10.1007/s10646-017-1776-5.
  • Moreno JL, Bastida F, Díaz-López M, Li Y, Zhou Y, López-Mondéjar R, Benavente-Ferraces I, Rojas R, Rey A, Carlos García-Gil J, et al. 2022. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma. 407:115536. doi: 10.1016/j.geoderma.2021.115536.
  • Moreno JL, Sanchez-Marín A, Hernández T, García C. 2006. Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils. Environ Manage. 37(5):626–633. doi: 10.1007/s00267-004-5006-6.
  • Mulugeta T, Abreha K, Tekie H, Mulatu B, Yesuf M, Andreasson E, Liljeroth E, Alexandersson E. 2019. Phosphite protects against potato and tomato late blight in tropical climates and has varying toxicity depending on the phytophthora infestans isolate. Crop Prot. 121:139–146. doi: 10.1016/j.cropro.2019.03.019.
  • Nannipieri P. 1994. The potential use of soil enzymes as ındicators of productivity, sustainability and pollution, soil biota management in sustainable farming systems. In: Pankhurst CE, Double BM, Gupta VVSR, Grace PR, editors. Soil biota. Management in sustainable farming systems. East Melbourne: CSIRO. p. 238–244.
  • Nivelle E, Verzeaux J, Habbib H, Kuzyakov Y, Decocq G, Roger D, Lacoux J, Duclercq J, Spicher F, Nava-Saucedo JE, et al. 2016. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl Soil Ecol. 108:147–155. doi: 10.1016/j.apsoil.2016.08.004.
  • NJDEP. 1996. Soil cleanup criteria, New Jersey department of environmental protection, proposed cleanup standards for contaminated sites. NJAC. 7:26D.
  • Page AL. 1974. Fate and effects of trace elements in sewage sludge when applied to agricultural lands. In: Sewage sludge when applied to agricultural land: a literature review. Cincinnati, Ohio: Environmental Protection Agency. p. 96.
  • Pascual JA, García C, Hernandez T. 1999. Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil. Biol Fertil Soils. 30(1–2):1–6. doi: 10.1007/s003740050579.
  • Perez-Espinosa A, Moreno-Caselles J, Moral R, Perez-Murcia MD, Gomez I. 2002. Effect of increased cobalt treatments on sewage sludge amended soil: nitrogen species in soil and transference to tomato plants. Arch Agron Soil Sci. 48(3):273–278. doi: 10.1080/03650340213839.
  • Qu Y, Tang J, Liu B, Lyu H, Duan Y, Yang Y, Wang S, Li Z. 2022. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region. Sci Rep. 12(1):1314. doi: 10.1038/s41598-022-05218-7.
  • Richards LA. 1954. Diagnosis and ımprovement of salina and alkalina soils: Handbook 60. Washington (DC): US Department of Agriculture. p. 105.
  • Sakin E, Ramazanoglu E, Seyrek A. 2021. Effects of different biochar amendments on soil enzyme activities and carbondioxide emission. Commun Soil Sci Plant Anal. 52(22):2933–2944. doi: 10.1080/00103624.2021.1971694.
  • Sakin E, Yanardag IH, Yalcin H. 2021. Appraisal of the black carbon in soils of Harran plain, Turkey. Range Manag Agrofor. 42(2):262–270.
  • Singh P, Mitra S, Majumdar D, Bhattacharyya P, Prakash A, Borah P, Paul A, Rangan L. 2017. Nutrient and enzyme mobilization in earthworm casts: a comparative study with addition of selective amendments in undisturbed and agricultural soils of a mountain ecosystem. Int Biodeterior Biodegrad. 119:437–447. doi: 10.1016/j.ibiod.2016.09.008.
  • Sinha MK, Dhillon SK, Dhillon KS, Dyanand S. 1978. Solubility relationship of iron, manganese, copper, and zinc in alkaline and calcareous soils. Soil Res. 16(1):19–26. doi: 10.1071/SR9780019.
  • Sparling GP, West AW. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem. 20(3):337–343. doi: 10.1016/0038-0717(88)90014-4.
  • Speratti AB, Johnson MS, Sousa HM, Dalmagro HJ, Couto EG. 2018. Biochar feedstock and pyrolysis temperature effects on leachate: DOC characteristics and nitrate losses from a Brazilian Cerrado Arenosol mixed with agricultural waste biochars. J Environ Manage. 211:256–268. doi: 10.1016/j.jenvman.2017.12.052.
  • Steinweg JM, Kostka JE, Hanson PJ, Schadt CW. 2018. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol Biochem. 125:244–250. doi: 10.1016/j.soilbio.2018.07.001.
  • Sun T, Wang YP, Wang ZY, Liu P, Xu GD. 2013. The effects of molybdenum and boron on the rhizosphere microorganisms and soil enzyme activities of soybean. Acta Physiol Plant. 35(3):763–770. doi: 10.1007/s11738-012-1116-6.
  • Szolnoki Z, Farsang A. 2013. Evaluation of metal mobility and bioaccessibility in soils of urban vegetable gardens using sequential extraction. Water Air Soil Pollut. 224(10):1737–1753. doi: 10.1007/s11270-013-1737-4.
  • Tabatabai MA, Bremner JM. 1972. Assay of urease activity in soils. Soil Biol Biochem. 4(4):479–487. doi: 10.1016/0038-0717(72)90064-8.
  • Tabatabai MA. 1994. Soil enzymes. In: Weaver RW, Angel JS., Bottomley PS, editors. Methods of soil analysis, part 2—microbiological and biochemical properties. SSSA Book Series No. 5. Madison (WI): Soil Science Society of America. p. 775–833.
  • Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Luo L, Yang Y, Huang H, Chen A. 2020. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ. 701:134751. doi: 10.1016/j.scitotenv.2019.134751.
  • Tietjen T, Wetzel RG. 2003. Extracellular enzyme-clay mineral complexes: enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquat Ecol. 37(4):331–339. doi: 10.1023/B:AECO.0000007044.52801.6b.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 19(6):703–707. doi: 10.1016/0038-0717(87)90052-6.
  • Yanardağ IH, Zornoza R, Bastida F, Büyükkiliç-Yanardağ A, García C, Faz A, Mermut AR. 2017. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma. 295:1–9. doi: 10.1016/j.geoderma.2017.02.008.
  • Yanardağ İH, Zornoza RAUL, Cano AF, Yanardağ AB, Mermut AR. 2015. Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis. Biol Fertil Soils. 51(2):183–196. doi: 10.1007/s00374-014-0962-3.
  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, et al. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res Int. 23(2):974–984. doi: 10.1007/s11356-015-4233-0.
  • Yang JE, Kim JJ, Skogley EO, Schaff BE. 1998. A Simple Spectrophotometric Determination of Nitrate in Water, Resin, and Soil Extracts. Soil Sci Soc Am J. 62(4):1108–1115. doi: 10.2136/sssaj1998.03615995006200040036x.
  • Yang ZX, Liu SQ, Zheng DW, Feng SD. 2006. Effects of cadium, zinc and lead on soil enzyme activities. J Environ Sci (China). 18(6):1135–1141. doi: 10.1016/S1001-0742(06)60051-X.
  • Zaborowska M, Kucharski J, Wyszkowska J. 2016. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environ Monit Assess. 188(7):398. doi: 10.1007/s10661-016-5399-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.