129
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Food-grade algae modified Schiff base-chitosan benzaldehyde composite for cationic methyl violet 2B dye removal: RSM statistical parametric optimization

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all

References

  • Abdulhameed AS, Jawad AH, Kashi E, Radzun KA, ALOthman ZA, Wilson LD. 2022. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application. Algal Res. 67:102864. doi:10.1016/j.algal.2022.102864.
  • Ahmad R, Ansari K. 2021. Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem. 108:90–102. doi:10.1016/j.procbio.2021.05.013.
  • Akkari I, Spessato L, Graba Z, Bezzi N, Kaci MM. 2023. A sustainably produced hydrochar from pomegranate peels for the purification of textile contaminants in an aqueous medium. Sustain. Chem. Pharm. 31:100924. doi:10.1016/j.scp.2022.100924.
  • Ali I, Burakova I, Galunin E, Burakov A, Mkrtchyan E, Melezhik A, Kurnosov D, Tkachev A, Grachev V. 2019. High-speed and high-capacity removal of methyl orange and malachite green in water using newly developed mesoporous carbon: kinetic and isotherm studies. ACS Omega. 4(21):19293–19306. doi:10.1021/acsomega.9b02669.
  • Altıntıg E, Kabadayı O, Bozdag D, Altundag S, Altundag H. 2022. Artificial neural network mathematical modeling of methyl violet removal with chitosan-coated clinoptilolite. DWT. 250:252–265. doi:10.5004/dwt.2022.28247.
  • Ashrafi SD, Safari GH, Sharafi K, Kamani H, Jaafari J. 2021. Adsorption of 4-nitrophenol on calcium alginate-multiwall carbon nanotube beads: modeling, kinetics, equilibriums and reusability studies. Int J Biol Macromol. 185:66–76. doi:10.1016/j.ijbiomac.2021.06.081.
  • Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. 2020. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol. 150:1072–1083. doi:10.1016/j.ijbiomac.2019.10.113.
  • Bayramoglu G, Angi SB, Acikgoz-Erkaya I, Arica MY. 2022. Preparation of effective green sorbents using O. Princeps alga biomass with different composition of amine groups: comparison to adsorption performances for removal of a model acid dye. J Mol Liq. 347:118375. doi:10.1016/j.molliq.2021.118375.
  • Bayramoglu G, Kilic M, Arica MY. 2023. Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A. Biodegrada. 34(3):263–281. doi:10.1007/s10532-023-10024-7.
  • Bayramoğlu G, Ozalp VC, Arıca MY. 2017. Removal of disperse red 60 dye from aqueous solution using free and composite fungal biomass of Lentinus concinnus. Water Sci Technol. 75(2):366–377. doi:10.2166/wst.2016.529.
  • Beigi N, Shayesteh H, Javanshir S, Hosseinzadeh M. 2023. Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity. Environ Res. 231(Pt 1):116146. doi:10.1016/j.envres.2023.116146.
  • Bonetto LR, Ferrarini F, De Marco C, Crespo JS, Guégan R, Giovanela M. 2015. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. J Water Process Eng. 6:11–20. doi:10.1016/j.jwpe.2015.02.006.
  • Chen YW, Lee HV, Juan JC, Phang SM. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym. 151:1210–1219. doi:10.1016/j.carbpol.2016.06.083.
  • El-Kammah M, Elkhatib E, Gouveia S, Cameselle C, Aboukila E. 2022. Enhanced removal of Indigo Carmine dye from textile effluent using green cost-efficient nanomaterial: adsorption, kinetics, thermodynamics and mechanisms. Sustain Chem Pharm. 29:100753. doi:10.1016/j.scp.2022.100753.
  • Eltabey RM, Abdelwahed FT, Eldefrawy MM, Elnagar MM. 2022. Fabrication of poly (maleic acid)-grafted cross-linked chitosan/montmorillonite nanospheres for ultra-high adsorption of anionic acid yellow-17 and cationic brilliant green dyes in single and binary systems. J Hazard Mater. 439:129589. doi:10.1016/j.jhazmat.2022.129589.
  • Emara AM, Elsharma EM, Abdelmonem IM. 2023. Adsorption of radioactive cesium using synthesized chitosan-g-poly (acrylic acid/N-vinylcaprolactam) by γ-irradiation. Radiat Phys Chem. 208:110892. doi:10.1016/j.radphyschem.2023.110892.
  • Freundlich HMF. 1906. Over the adsorption in solution. J. Phys. Chem. 57:385–471.
  • Geremew B, Zewde D. 2022. Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: optimization, isotherms, kinetics, and thermodynamic studies. Environ Technol Innovat. 28:102577. doi:10.1016/j.eti.2022.102577.
  • Hanafi MF, Sapawe N. 2020. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today: Proceed. 31:A141–A150. doi:10.1016/j.matpr.2021.01.258.
  • Ho YS, McKay G. 1998. Sorption of dye from aqueous solution by peat. Chem Eng J. 70(2):115–124. ‏ doi:10.1016/S0923-0467(98)00076-1.
  • Hussain M, Chatha SAS, Hussain AI, Ahmad T. 2023. Application of chitosan-Acacia nilotica bio-composite for wastewater treatment and significance of RSM-model for parametric optimization. Int J Environ Sci Technol. 20(7):7487–7500. doi:10.1007/s13762-022-04448-6.
  • Jawad AH, Abdulhameed AS, Surip SN, Alothman ZA. 2023. Hybrid multifunctional biocomposite of chitosan grafted benzaldehyde/montmorillonite/algae for effective removal of brilliant green and reactive blue 19 dyes: optimization and adsorption mechanism. J Clean Product. 393:136334. doi:10.1016/j.jclepro.2023.136334.
  • Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, ALOthman ZA, Wilson LD. 2022. Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J Polym Environ. 30(7):2759–2773. doi:10.1007/s10924-022-02382-9.
  • Kheradmand A, Negarestani M, Mollahosseini A, Shayesteh H, Farimaniraad H. 2022. Low-cost treated lignocellulosic biomass waste supported with FeCl3/Zn (NO3)2 for water decolorization. Sci Rep. 12(1):16442. doi:10.1038/s41598-022-20883-4.
  • Kurczewska J. 2022. Chitosan-montmorillonite hydrogel beads for effective dye adsorption. J Water Process Eng. 48:102928. doi:10.1016/j.jwpe.2022.102928.
  • Lagergren S. 1898. Zur theorie der sogenannten adsorption geloster stoffe. Vet.Akad.Handl. 24:1–39. ‏
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Li D, Zhan W, Gao X, Wang Q, Li L, Zhang J, Cai G, Zuo W, Tian Y. 2023. Aminated waste paper membrane for efficient and rapid filtration of anionic dyes and antibiotics from water. Chem Eng J. 455:140641. doi:10.1016/j.cej.2022.140641.
  • Mallakpour S, Radfar Z, Feiz M. 2023. Chitosan/tannic acid/ZnFe layered double hydroxide and mixed metal oxides nanocomposite for the adsorption of reactive dyes. Carbohydr Polym. 305:120528. doi:10.1016/j.carbpol.2022.120528.
  • Moghaddam AZ, Ghiamati E, Pourashuri A, Allahresani A. 2018. Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Int J Biol Macromol. 120(Pt B):1714–1725. doi:10.1016/j.ijbiomac.2018.09.198.
  • Mohamed MH, Udoetok IA, Solgi M, Steiger BGK, Zhou Z, Wilson LD. 2022. Design of sustainable biomaterial composite adsorbents for point-of-use removal of lead ions from water. Front Water. 4:739492. doi:10.3389/frwa.2022.739492.
  • Mohamed Noor MH, Wong S, Ngadi N, Mohammed Inuwa I, Opotu LA. 2022. Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review. Int J Environ Sci Technol. 19(7):6935–6956. doi:10.1007/s13762-021-03369-0.
  • Moradi S, Azizian S. 2016. Preparation of nanostructured carbon covered sand for removal of methyl violet from water. J Mo Liq. 219:909–913. doi:10.1016/j.molliq.2016.03.075.
  • Nath A, Biswas S, Pal A. 2023. Eggshell powder as an efficient recyclable catalyst generates H2O2 prompted radicals for selective oxidative mineralization of crystal violet dye at room temperature. Mate Che Phys. 303:127785. doi:10.1016/j.matchemphys.2023.127785.
  • Normi NI, Abdulhameed AS, Jawad AH, Surip SN, Razuan R, Ibrahim ML. 2022. Hydrothermal-assisted grafting of schiff base chitosan by salicylaldehyde for adsorptive removal of acidic dye: statistical modeling and adsorption mechanism. J Poly Environ. 31:1925–1937.
  • Ramalingam G, Nagapandiselvi P, Priya AK, Rajendran S. 2022. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere. 300:134391. doi:10.1016/j.chemosphere.2022.134391.
  • Rasheed T, Shafi S, Bilal M, Hussain T, Sher F, Rizwan K. 2020. Surfactants-based remediation as an effective approach for removal of environmental pollutants—a review. Mo. Liq. 318:113960. doi:10.1016/j.molliq.2020.113960.
  • Rathi BS, Kumar PS. 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut. 280:116995. doi:10.1016/j.envpol.2021.116995.
  • Robledo-Padilla F, Aquines O, Silva-Núñez A, Alemán-Nava GS, Castillo-Zacarías C, Ramirez-Mendoza RA, Parra-Saldívar R. 2020. Evaluation and predictive modeling of removal condition for bioadsorption of indigo blue dye by Spirulina platensis. Microorganisms. 8(1):82. doi:10.3390/microorganisms8010082.
  • Rout PR, Bhunia P, Dash RR. 2017. Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns. J Water Process Eng. 17:168–180. doi:10.1016/j.jwpe.2017.04.003.
  • Saheed IO, Da Oh W, Suah FBM. 2021. Chitosan modifications for adsorption of pollutants–A review. J Hazard Mater. 408:124889. doi:10.1016/j.jhazmat.2020.124889.
  • Saket P, Kashyap M, Bala K, Joshi A. 2022. Microalgae and bio-polymeric adsorbents: an integrative approach giving new directions to wastewater treatment. Int J Phytoremediation. 24(5):536–556. doi:10.1080/15226514.2021.1952925.
  • Şenol ZM. 2021. A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int J Biol Macromol. 183:1640–1648. doi:10.1016/j.ijbiomac.2021.05.130.
  • Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. 2016. Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 57(27):12822–12831. doi:10.1080/19443994.2015.1054315.
  • Shi Y, Wang L, Miao X, Cao Z, Zhang Y, Cheng L, Yang J. 2023. In situ synthesis of donut-like Fe-doped-BiOCl@ Fe-MOF composites using for excellent performance photodegradation of dyes and tetracycline. J Photochem Photobiol A: Chem. 442:114704. doi:10.1016/j.jphotochem.2023.114704.
  • Solgi M, Steiger BGK, Wilson LD. 2023. A fixed-bed column with an agro-waste biomass composite for controlled separation of sulfate from aqueous media. Separations. 10(4):262. doi:10.3390/separations10040262.
  • Steiger BGK, Zhou Z, Anisimov IA, Evitts RW, Wilson LD. 2023. Valorization of agro-waste biomass as composite adsorbents for sustainable wastewater treatment. Ind Crops Prod. 191:115913–115923. doi:10.1016/j.indcrop.2022.115913.
  • Suhaimi A, Abdulhameed AS, Jawad AH, Yousef TA, Al Duaij OK, ALOthman ZA, Wilson LD. 2022. Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: an optimized removal process and tailored adsorption mechanism of crystal violet dye. Diamond Relat Mater. 130:109456. doi:10.1016/j.diamond.2022.109456.
  • Tang, H., Liu, Y., Li, B., Zhu, L., Tang, Y. 2020. Preparation of chitosan graft polyacrylic acid/graphite oxide composite and the study of its adsorption properties of cationic dyes. Polym Sci Ser A. 62:272–283. doi:10.1134/S0965545X20030141.
  • Temkin MI. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS. 12:327–356.
  • Tkaczyk A, Mitrowska K, Posyniak A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Total Environ. 717:137222. doi:10.1016/j.scitotenv.2020.137222.
  • Trinh TTPNX, Nguyet DM, Quan TH, Anh TNM, Thinh DB, Tai LT, Lan NT, Trinh DN, Dat NM, Nam HM, et al. 2021. Preparing three-dimensional graphene aerogels by chemical reducing method: Investigation of synthesis condition and optimization of adsorption capacity of organic dye. Surf Interface. 23:101023. doi:10.1016/j.surfin.2021.101023.
  • Türker OC, Baran T. 2018. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Int J Phytoremediation. 20(2):175–183. doi:10.1080/15226514.2017.1350137.
  • Wang J, Zhuang S. 2022. Chitosan-based materials: preparation, modification and application. J Clean Product. 355:131825. doi:10.1016/j.jclepro.2022.131825.
  • Zain ZM, Abdulhameed AS, Jawad AH, ALOthman ZA, Yaseen ZM. 2023. A pH-sensitive surface of chitosan/sepiolite clay/algae biocomposite for the removal of malachite green and remazol brilliant blue R dyes: optimization and adsorption mechanism study. J Polym Environ. 31(2):501–518. doi:10.1007/s10924-022-02614-y.
  • Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innovat. 22:101504. doi:10.1016/j.eti.2021.101504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.