187
Views
3
CrossRef citations to date
0
Altmetric
Research Article

EDDS and polystyrene interactions: implications for soil health and management practices

References

  • Allen SE, Grinshaw HM, Parkinson JA, Qjuarmby C. 1974. Chemical methods for analyzing ecological materials. London: Oxford Blackwell Scientific Publications. p. 565.
  • Andrady AL. 2015. Persistence of plastic litter in the oceans. Marine anthropogenic litter. Cham, Switzerland: Springer. p. 57–72.
  • Anik AH, Hossain S, Alam M, Sultan MB, Hasnine MT, Rahman MM. 2021. Microplastics pollution: a comprehensive review on the sources, fates, effects, and potential remediation. Environ Nanotechnol Monit Manag. 16:100530. doi:10.1016/j.enmm.2021.100530.
  • Bayo J, Martínez A, Guillén M, Olmos S, Roca MJ, Alcolea A. 2017. Microbeads in commercial facial cleansers: threatening the environment. Clean Soil Air Water. 45(7):1600683. doi:10.1002/clen.201600683.
  • Beiyuan J, Tsang DCW, Ok YS, Zhang W, Yang X, Baek K, Li XD. 2016. Integrating EDDS-enhanced washing with low-cost stabilization of metalcontaminated soil from an e-waste recycling site. Chemosphere. 159:426–432. doi:10.1016/j.chemosphere.2016.06.030.
  • Belzagui F, Gutiérrez-Bouzán C, Álvarez-Sánchez A, Vilaseca M. 2020. Textile microfibers reaching aquatic environments: a new estimation approach. Environ Pollut. 265(Pt B):114889. doi:10.1016/j.envpol.2020.114889.
  • Bell PF, Chaney RL, Angle JS. 1991. Free metal activity and total metal concentrations as indexes of micronutrient availability to barley (Hordeum vulgare cv. ‘Klages’). Plant Soil. 130(1–2):51–62. doi:10.1007/BF00011855.
  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere. 226:774–781. doi:10.1016/j.chemosphere.2019.03.163.
  • Cao A, Carucci A, Lai T, La Colla P, Tamburini E. 2007. Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol. 43(4):200–206. doi:10.1016/j.ejsobi.2007.02.002.
  • Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W. 2010. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol. 60(4):850–e861. doi:10.1007/s00248-010-9700-z.
  • Chuan M, Shu G, Liu J. 1996. Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut. 90(3–4):543–e556. doi:10.1007/BF00282668.
  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 24(4):1405–1416. doi:10.1111/gcb.14020.
  • Duan C, Fang LC, Yang C, Chen W, Cui Y, Li S. 2018. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol Environ Saf. 156:106–e115. doi:10.1016/j.ecoenv.2018.03.015.
  • Duquene L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J. 2009. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ. 407(5):1496–1505. doi:10.1016/j.scitotenv.2008.10.049.
  • Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C. 2008. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ. 401(1–3):21–28. doi:10.1016/j.scitotenv.2008.03.024.
  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A. 2007. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 68(2):345–353. doi:10.1016/j.chemosphere.2006.12.058.
  • Fang LC, Wang MK, Cai L, Cang L. 2017. Deciphering biodegradable chelantenhanced phytoremediation through microbes and nitrogen transformation in contaminated soils. Environ Sci Pollut Res Int. 24(17):14627–e14636. doi:10.1007/s11356-017-9029-y.
  • Ferraro A, van Hullebusch ED, Huguenot D, Fabbricino M, Esposito G. 2015. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: case of a Cu contaminated soil. J Environ Manage. 163:62–69. doi:10.1016/j.jenvman.2015.08.004.
  • García-Fernández I, Miralles-Cuevas S, Oller I, Malato S, Fernández-Ibáñez P, Polo-López MI. 2019. Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. J Hazard Mater. 372:85–93. doi:10.1016/j.jhazmat.2018.07.037.
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Madison (WI): ASA, SSSA. p. 383–411.
  • Gouin T, Roche N, Lohmann R, Hodges G. 2011. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol. 45(4):1466–1472. doi:10.1021/es1032025.
  • Gupta PK. 2000. Soil, plant, water and fertilizer analysis. New Dehli, India: Agrobios.
  • Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation leaching and toxicity. Plant Soil. 235(1):105–114. doi:10.1023/A:1011857303823.
  • Huang W, Brigante M, Wu F, Hanna K, Mailhot G. 2012. Development of a new homogenous Photo-Fenton process using Fe (III)-EDDS complexes. J Photochem Photobiol A. 239:17–23. doi:10.1016/j.jphotochem.2012.04.018.
  • Jalali M, Ostovarzadeh H. 2009. Evaluation of phosphorus leaching from contaminated calcareous soils due to the application of sheep manure and ethylenediamine tetraacetic acid. Environ Earth Sci. 59(2):441–e448. doi:10.1007/s12665-009-0042-4.
  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut. 250:831–838. doi:10.1016/j.envpol.2019.04.055.
  • Jones PW, Williams DR. 2001. Chemical speciation used to assess [S,S′] -ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot. 54(4):587–593. doi:10.1016/s0969-8043(00)00297-9.
  • Ko CH, Chen PJ, Chen SH, Chang FC, Lin FC, Chen KK. 2010. Extraction of chromium, copper, and arsenic from CCA-treated wood using biodegradable chelating agents. Bioresour Technol. 101(5):1528–1531. doi:10.1016/j.biortech.2009.07.027.
  • Kos B, Leštan D. 2003. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol. 37(3):624–629. doi:10.1021/es0200793.
  • Li J, Mailhot G, Wu F, Deng N. 2010. Photochemical efficiency of Fe (III)-EDDS complex: OH radical production and 17β-estradiol degradation. J Photochem Photobiol A. 212(1):1–7. doi:10.1016/j.jphotochem.2010.03.001.
  • Li X, Mei Q, Chen L, Zhang H, Dong B, Dai X, He C, Zhou J. 2019. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Res. 157:228–237. doi:10.1016/j.watres.2019.03.069.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Lozano YM, Lehnert T, Linck LT, Lehmann A, Rillig MC. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front Plant Sci. 12:616645. doi:10.3389/fpls.2021.616645.
  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X, Zhu J, Cai Z, Jia Z. 2012. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J. 6(10):1978–e1984. doi:10.1038/ismej.2012.45.
  • Luo C, Shen Z, Xiangdong L. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59(1):1–11. doi:10.1016/j.chemosphere.2004.09.100.
  • Marschner P, Rengel Z. 2012. Nutrient availability in soils. In: Marschner H, editor. Marschner’s mineral nutrition of higher plants. Cambridge (MA): Academic Press. p. 315e330.
  • Meers, E, Qadir, M, de Caritat, P, Tack, F M G, Du Laing, G, Zia, M H, Saifullah,. 2009. EDTA-assisted Pb phytoextraction. Chemosphere. 10(74): 1279–1291. doi:10.1016/j.chemosphere.2008.11.007.
  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58(8):1011–1022. doi:10.1016/j.chemosphere.2004.09.047.
  • Metsarinne S, Tuhkanen T, Aksela R. 2001. Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) within natural UV radiation range. Chemosphere. 45(6-7):949–955. doi:10.1016/s0045-6535(01)00022-4.
  • Miralles-Cuevas S, Oller I, Ruíz-Delgado A, Cabrera-Reina A, Cornejo-Ponce L, Malato S. 2019. EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: effect of iron species and different oxidants. J Hazard Mater. 372:129–136. doi:10.1016/j.jhazmat.2018.03.018.
  • Mühlbachova G. 2011. Soil microbial activities and heavy metal mobility in longterm contaminated soils after addition of EDTA and EDDS. Ecol. Eng. 37:1064–1071.
  • Nelson DW, Sommers LE. 1982. Total carbon, organic carbon and organic matter. In: Page AL, editor. Methods of soil analysis. Madison (WI): ASA, SSSA. p. 539–120.
  • Nizzetto L, Langaas S, Futter M. 2016. Pollution: do microplastics spill on to farm soils? Nature. 537(7621):488–488. doi:10.1038/537488b.
  • Nowack B, Schulin R, Robinson BH. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol. 40(17):5225–5232. doi:10.1021/es0604919.
  • Orama M, Hyvönen H, Saarinen H, Aksela R. 2002. Complexation of [S, S] and mixed stereoisomers of N, N′-ethylenediaminedisuccinic acid (EDDS) with Fe (III), Cu (II), Zn (II) and Mn (II) ions in aqueous solution. J Chem Soc, Dalton Trans. (24):4644–4648. doi:10.1039/B207777A.
  • Ory NC, Lehmann A, Javidpour J, Stöhr R, Walls GL, Clemmesen C. 2020. Factors influencing the spatial and temporal distribution of microplastics at the sea surface – a year-long monitoring case study from the urban Kiel Fjord, southwest Baltic Sea. Sci Total Environ. 736:139493. doi:10.1016/j.scitotenv.2020.139493.
  • Panno SV, Kelly WR, Scott J, Zheng W, McNeish RE, Holm N, Hoellein TJ, Baranski EL. 2019. Microplastic contamination in karst groundwater systems. Ground Water. 57(2):189–196. doi:10.1111/gwat.12862.
  • Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, Garbeva P. 2020. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater. 387:121711. doi:10.1016/j.jhazmat.2019.121711.
  • Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F. 2007. The use of NTA and EDDS for enhanced phytoextraction of metals from multiply contaminated soil by Brassica carinata. Chemosphere. 68(10):1920–1928. doi:10.1016/j.chemosphere.2007.02.058.
  • Race M. 2017. Applicability of alkaline precipitation for the recovery of EDDS spent solution. J Environ Manage. 203(Pt 1):358–363. doi:10.1016/j.jenvman.2017.08.013.
  • Rassaei F. 2021. Effect of different acidic phosphorus agents on the cadmium chemical fractions in calcareous soil. Arab J Geosci. 14(21):1–8. doi:10.1007/s12517.
  • Rassaei F. 2022a. The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted soils. Commun Soil Sci Plant Anal. 54(10):1426–1446. doi:10.1080/00103624.2022.2146704.
  • Rassaei F. 2022b. Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils. Soil Sci Ann. 73(2):1–6. doi:10.37501/soilsa/152586.
  • Rassaei F. 2022c. Effect of two different sources of organic amendments on soil characteristics and chemical forms of cadmium. Agrochimica. 66(4):277–293. doi:10.12871/00021857202244.
  • Rassaei F. 2023a. Impact of polystyrene microplastics on cadmium uptake in corn (Zea mays L.) in a cadmium-contaminated calcareous soil. Env Prog Sustain Energy. doi:10.1002/ep.14230.
  • Rassaei F. 2023b. Rice yield and carbon dioxide emissions in a paddy soil: a comparison of biochar and polystyrene microplastics. Env Prog Sustain Energy. doi:10.1002/ep.14217.
  • Rassaei F. 2023c. Sugarcane bagasse biochar changes the sorption kinetics and rice (Oryza sativa L.) cadmium uptake in a paddy soil. Gesunde Pflanzen. doi:10.1007/s10343-023-00860-1.
  • Rassaei F. 2023d. Methane emissions and rice yield in a paddy soil: the effect of biochar and polystyrene microplastics interaction. Paddy Water Environ. 21(1):85–97. doi:10.1007/s10333-022-00915-5.
  • Rassaei F. 2023e. Adsorption kinetics and isotherm modeling of lead in calcareous soils: insights into thermodynamics, desorption, and soil properties. Commun Soil Sci Plant Anal. 54(15):2059–2076. doi:10.1080/00103624.2023.2211116.
  • Rassaei F. 2023f. Sugarcane bagasse biochar affects corn (Zea mays L.) growth in cadmium and lead-contaminated calcareous clay soil. Arab J Geosci. 16(3):181. doi:10.1007/s12517-023-11225-3.
  • Rassaei F. 2023g. Biochar effects on rice paddy cadmium contaminated calcareous clay soil: a study on adsorption kinetics and cadmium uptake. Paddy Water Environ. 21(3):389–400. doi:10.1007/s10333-023-00937-7.
  • Rassaei F, Hoodaji M, Abtahi S. 2019b. Cadmium chemical forms in two calcareous soils treated with different levels of incubation time and moisture regimes. J Environ Protect. 10(04):500–513 doi:https://doi.org/10.4236/jep.2019.104029.
  • Rassaei F, Hoodaji M, Abtahi SA. 2019a. Zinc and incubation time effect on cadmium chemical fractions in two types of calcareous soil. Zinc and incubation time effect on cadmium chemical fractions in two types of calcareous soil. Agrochimica. 63(4):337–349. doi:10.12871/00021.
  • Rassaei F, Hoodaji M, Abtahi SA. 2020a. Fractionation and mobility of cadmium and zinc in calcareous soils of Fars Province, Iran. Arab J Geosci. 13(20):1097. doi:10.1007/s12517-020-06123-x.
  • Rassaei F, Hoodaji M, Abtahi SA. 2020b. Cadmium speciation as influenced by soil water content and zinc and the studies of kinetic modeling in two soils textural classes. Int. Soil Water Conserv. Res. 8(3):286–294. doi:10.1016/j.iswcr.2020.05.003.
  • Rassaei F, Hoodaji M, Abtahi SA. 2020c. Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy Water Environ. 18(4):595–606 doi:https://doi.org/10.1007/s10333-020-00804-9.
  • Rassaei F, Hoodaji M, Abtahi SA. 2020d. Cadmium fractions in two calcareous soils affected by incubation time, zinc and moisture regime. Commun Soil Sci Plant Anal. 51(4):456–467. doi:10.1080/001036.
  • Reed BE, Carriere PC, Moore R. 1996. Flushing of a Pb (II) contaminated soil using HCl, EDTA, and CaCl2. J Environ Eng. 122(1):48–50. doi:10.1061/(ASCE)0733-9372(1996)122:1(48).
  • Richards LA. 1969. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook, Vol. 60. Washington: United States Salinity Laboratory, USDA
  • Saifullah, Ghafoor A, Qadir M. 2009. Lead phytoextraction by wheat in response to the EDTA application method. Int J Phytoremediat. 11(3):268–282. doi:10.1080/15226510802432702.
  • Sarkar D, Andra SS, Saminathan SKM, Datta R. 2008. Chelant-aided enhancement of lead mobilization in residential soils. Environ Pollut. 156(3):1139–1148. doi:10.1016/j.envpol.2008.04.004.
  • Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ. 1997. Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere. 34(11):2375–2391. doi:10.1016/s0045-6535(97)00082-9.
  • Shen G, Ju W, Liu Y, Guo X, Zhao W, Fang LC. 2019. Impact of urea addition and rhizobium inoculation on plant resistance in metal contaminated soil. Int J Environ Res Public Health. 16(11):1955. doi:10.3390/ijerph16111955.
  • So WK, Chan K, Not C. 2018. Abundance of plastic microbeads in Hong Kong coastal water. Mar Pollut Bull. 133:500–505. doi:10.1016/j.marpolbul.2018.05.066.
  • Takahashi R, Fujimoto N, Suzuki M, Endo T. 1997. Biodegradabilities of ethylenediamin-N,N’-disuccinic acid (EDDS) and other chelating agents. Biosci Biotechnol Biochem. 61(11):1957–1959. doi:10.1271/bbb.61.1957.
  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B. 2004. Extration of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol. 38(3):937–944. doi:10.1021/es0348750.
  • Tandy S, Schulin R, Nowack B. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere. 62(9):1454–1463. doi:10.1016/j.chemosphere.2005.06.005.
  • Vadas TM, Zhang X, Curran AM, Ahner BA. 2007. Fate of DTPA, EDTA, and EDDS in hydroponic media and effects on plant mineral nutrition. J Plant Nutr. 30(8):1229–1246. doi:10.1080/01904160701555119.
  • Vandevivere P, Hammes F, Verstraete W, Feijtel T, Schowanek D. 2001. Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S, S]-EDDS. J Environ Eng. 127(9):802–811. doi:10.1061/(ASCE)0733-9372(2001)127:9(802).
  • Vandevivere PC, Saveyn H, Verstraete W, Feijtel TC, Schowanek DR. 2001. Biodegradation of metal (S,S)-EDDS complexes. Environ Sci Technol. 35(9):1765–1770. doi:10.1021/es0001153.
  • Veerasingam S, Al-Khayat JA, Aboobacker VM, Hamza S, Vethamony P. 2020. Sources, spatial distribution and characteristics of marine litter along the west coast of Qatar. Mar Pollut Bull. 159:111478. doi:10.1016/j.marpolbul.2020.111478.
  • World Reference Base for Soil Resources. 2014. update 2015. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO. World Soil Resources Reports No. 106.
  • Wu LH, Sun XF, Luo YM, Xing XR, Christie P. 2007. Influence of [S,S]-EDDS on phytoextraction of copper and zinc by elsholtzia splendens from metal-contaminated soil. Int J Phytoremediation. 9(3):227–241. doi:10.1080/15226510701376091.
  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, Wang H, Lu Z, Brookes PC, Tang C, et al. 2020. Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Critic Rev Environ Sci Technol. 50(21):2175–2222. doi:10.1080/10643389.2019.1694822.
  • Yip TCM, Tsang DCW, Ng KTW, Lo, IMC. 2009. Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. Chemosphere. 74(2):301–307. doi:10.1016/j.chemosphere.2008.09.006.
  • Yu H, Zhang Z, Zhang Y, Fan P, Xi B, Tan W. 2021. Metal type and aggregate micro environment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil. Sci Total Environ. 752:141956. doi:10.1016/j.scitotenv.2020.141956.
  • Yun SM, Kang CS, Kim J, Kim HS. 2015. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study. J Hazard Mater. 287:429–437. doi:10.1016/j.jhazmat.2015.01.062.
  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 159(1):84–e91. doi:10.1016/j.envpol.2010.09.019.
  • Zhang S, Han B, Sun Y, Wang F. 2020. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater. 388:121775. doi:10.1016/j.jhazmat.2019.121775.
  • Zhu F, Zhu C, Wang C, Gu C. 2019. Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol. 102(6):741–749. doi:10.1007/s00128-019-02623-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.