155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Azolla filiculoides potential in pyrene and phenanthrene accumulation and phytoremediation in contaminated waters

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Appenroth KJ, Krech K, Keresztes Á, Fischer W, Koloczek H. 2010. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere. 78(3):216–223. doi: 10.1016/j.chemosphere.2009.11.007.
  • Asghari S, Movafeghi A, Lisar SYS, Barar J, Omidi Y. 2018. Effects of phenanthrene on growth parameters and antioxidant systems in the green microalga Chlorella vulgaris. Biointerface Res Appl Chem. 8(8):3405–3411.
  • Asghari S, Rajabi F, Tarrahi R, Salehi-Lisar SY, Asnaashari S, Omidi Y, Movafeghi A. 2020. Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: evaluation of antioxidant systems and identification of intermediate biodegradation compounds. J Appl Phycol. 32(1):411–419. doi: 10.1007/s10811-019-01921-7.
  • Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut. 60(3-4):279–300. doi: 10.1007/BF00282628.
  • Cotruvo JA. 2017. 2017 WHO guidelines for drinking water quality: first addendum to the fourth edition. JAm Water Works Assoc. 109(7):44–51. doi: 10.5942/jawwa.2017.109.0087.
  • Gao Y, Zhu L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 55(9):1169–1178. doi: 10.1016/j.chemosphere.2004.01.037.
  • Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. 2020. Oxidative stress and marine carotenoids: application by using nanoformulations. Mar Drugs. 18(8):423. doi: 10.3390/md18080423.
  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L. 2008. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull. 56(8):1400–1405. doi: 10.1016/j.marpolbul.2008.05.003.
  • Houshani M, Salehi-Lisar SY, Motafakkerazad R, Movafeghi A. 2019. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). Environ Sci Pollut Res Int. 26(10):9938–9944. doi: 10.1007/s11356-019-04371-3.
  • Houshani M, Salehi-Lisar SY, Movafeghi A, Motafakkerazad R. 2019. Growth and antioxidant system responses of maize (Zea mays L.) seedling to different concentration of pyrene in a controlled environment. AAS. 113(1):29–39. doi: 10.14720/aas.2019.113.1.03.
  • Hussain T, Koyro H-W, Zhang W, Liu X, Gul B, Liu X. 2020. Low salinity improves photosynthetic performance in Panicum antidotale under drought stress. Front Plant Sci. 11:481. doi: 10.3389/fpls.2020.00481.
  • Iqram AM, Seran T. 2016. Effect of Foliar Application of Albert Solution on Growth and Yield of Tomato (Lycopersicon esculentum Mill.) Adv Res Food Agri Environ Sci. 3(4):17–22.
  • Jan FA, Khan S, Ishaq M, Naeem M, Ahmad I, Hussain S. 2014. Brick kiln exhaust as a source of polycyclic aromatic hydrocarbons (PAHs) in the surrounding soil and plants: a case study from the city of Peshawar, Pakistan. Arab J Geosci. 7(1):13–19. doi: 10.1007/s12517-013-0901-x.
  • Joshi P, Swami A. 2009. Air pollution induced changes in the photosynthetic pigments of selected plant species. J Environ Biol. 30(2):295–298.
  • Juhasz AL, Naidu R. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation. 45(1-2):57–88. doi: 10.1016/S0964-8305(00)00052-4.
  • Kang F, Chen D, Gao Y, Zhang Y. 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)BMC Plant Biol. 10(1):210. doi: 10.1186/1471-2229-10-210.
  • Kosesakal T. 2018. Assessment of the biodegradation capacity of Azolla on polycyclic aromatic hydrocarbons in crude oil. Global NEST J. 20(3):27–32.
  • Kristanti RA, Hadibarata T. 2023. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opin Environ Sci Health. 32:100451. doi: 10.1016/j.coesh.2023.100451.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes Methods in Enzymology.p. 350–382. Cambridge (US): Academic Press. doi: 10.1016/0076-68799(87)48036-1.
  • Luo W, Lu Y, Wang G, Shi Y, Wang T, Giesy JP. 2008. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere. 72(5):797–802. doi: 10.1016/j.chemosphere.2008.03.003.
  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M. 2006. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere. 62(2):275–284. doi: 10.1016/j.chemosphere.2005.05.026.
  • Movafeghi A, Khataee AR, Moradi Z, Vafaei F. 2016. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: an artificial neural networks modeling. Int J Phytoremediation. 18(4):337–347. doi: 10.1080/15226514.2015.1109588.
  • Moyse A. 1979. Lipids and lipid polymers in higher plants, M. Tevini, HK Lichtenthaler (Eds.), Springer-Verlag, New York (1977): Elsevier.
  • Noorjahan C, Jamuna S. 2015. Biodegradation of sewage waste water using Azolla microphylla and its reuse for aquaculture of fish Tilapia mossambica. J Environ Sci Toxicol Food Technol. 9(3):75–80.
  • Parrish ZD, White JC, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI. 2006. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere. 64(4):609–618. doi: 10.1016/j.chemosphere.2005.11.003.
  • Patel JG, Kumar JIN, Kumar RN, Khan SR. 2016. Biodegradation capability and enzymatic variation of potentially hazardous polycyclic aromatic hydrocarbons—anthracene and pyrene by Anabaena fertilissima. Polycyclic Aromat Compd. 36(1):72–87. doi: 10.1080/10406638.2015.1039656.
  • Patel MS, Tiwari K. 2015. Fluoranthene and acenaphthene metabolism by Chlorella vulgaris: identity of intermediates formed during degradation and its growth effect. Inte. J. of Rec. Res. and Re. 8(1):26–33.
  • Patterson DT. 1981. Effects of allelopathic chemicals on growth and physiological responses of soybean (glycine max). Weed Sci. 29(1):53–59. doi: 10.1017/S0043174500025820.
  • Qiu Y-W, Zhang G, Liu G-Q, Guo L-L, Li X-D, Wai O. 2009. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuarine Coastal Shelf Sci. 83(1):60–66. doi: 10.1016/j.ecss.2009.03.018.
  • Rahman MA, Reichman SM, De Filippis L, Tavakoly Sany SB, Hasegawa H. 2016. Phytoremediation of Toxic Metals in Soils and Wetlands: concepts and Applications. In H. Hasegawa, I. M. M. Rahman, & M. A. Rahman (Eds.), Environmental Remediation Technologies for Metal-Contaminated Soils. p. 161–195. Tokyo, Japan: Springer.
  • Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad S. 1994. Accumulation of Secondary Carotenoids in Chlorella zofingiensis. J Plant Physiol. 144(3):287–292. doi: 10.1016/S0176-1617(11)81189-2.
  • Salehi-Lisar SY, Deljoo S. 2015. The physiological effect of fluorene on Triticum aestivum, Medicago sativa, and Helianthus annus. Cogent Food & Agriculture. 1(1):1020189. doi: 10.1080/23311932.2015.1020189.
  • Sanders MJ, Du Preez HH, Van Vuren JHJ. 1998. The freshwater river crab, potamonautes warreni, as a bioaccumulative indicator of iron and manganese pollution in two aquatic systems. Ecotoxicol Environ Saf. 41(2):203–214. doi: 10.1006/eesa.1998.1699.
  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS. 2012. Phytoremediation potential of aquatic macrophyte, Azolla. AMBIO. 41(2):122–137. doi: 10.1007/s13280-011-0159-z.
  • Van Epps A. 2006. Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, US. 1:10–12.
  • Wagh N, Shukla PV, Tambe SB, Ingle S. 2006. Biological monitoring of roadside plants exposed to vehicular pollution in Jalgaon city. J Environ Biol. 37(2):419–421.
  • Wei H, Tang M, Xu X. 2023. Mechanism of uptake, accumulation, transport, metabolism and phytotoxic effects of pharmaceuticals and personal care products within plants: a review. Sci Total Environ. 892:164413. doi: 10.1016/j.scitotenv.2023.164413.
  • Yildiz Töre G, Özkoç ÖB. 2022. 4 - Recent developments in aquatic macrophytes for environmental pollution control: a case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea). In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Elsevier. p. 75–127. Tekirdag (TR): Tekirdag Namik Kemal University.
  • Zazouli MA, Asghari S, Tarrahi R, Lisar SYS, Babanezhad E, Dashtban N. 2022. The potential of common duckweed (Lemna minor) in phytoremediation of phenanthrene and pyrene. Environ Eng Res. 28(1):210592–210590. doi: 10.4491/eer.2021.592.
  • Zazouli MA, Belarak D, Karimnezhad F, Khosravi F. 2014. Removal of fluoride from aqueous solution by using of adsorption onto modified Lemna minor: adsorption isotherm and kinetics study. J Mazandaran Univ Med Sci. 23(109):195–204.
  • Zazouli MA, Mahdavi Y, Bazrafshan E, Balarak D. 2014. Phytodegradation potential of bisphenolA from aqueous solution by Azolla filiculoides. J Environ Health Sci Eng. 12(1):66. doi: 10.1186/2052-336X-12-66.
  • Zhang Y, Zhang L, Huang Z, Li Y, Li J, Wu N, He J, Zhang Z, Liu Y, Niu Z. 2019. Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: composition, distribution and influencing factors. Ecotoxicol Environ Saf. 177:108–116. doi: 10.1016/j.ecoenv.2019.03.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.