170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation technology for recovery of Ni by Acacia plants in association with Bacillus amyloliquefaciens isolated from E-waste contaminated site

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Abou-Shanab RAI, Angle JS, Chaney RL. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem. 38(9):2882–2889. doi: 10.1016/j.soilbio.2006.04.045.
  • Anderson C, Moreno F, Meech J. 2005. A field demonstration of gold phytoextraction technology. Miner Eng. 18(4):385–392. doi: 10.1016/j.mineng.2004.07.002.
  • Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF. 2012. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ. 423:111–119. doi: 10.1016/j.scitotenv.2012.01.063.
  • Burd GI, Dixon DG, Glick BR. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol. 64(10):3663–3668. doi: 10.1128/AEM.64.10.3663-3668.1998.
  • Dinh T, Dobo Z, Kovacs H. 2022. Phytomining of noble metals – A review. Chemosphere. 286(Pt 3):131805. doi: 10.1016/j.chemosphere.2021.131805.
  • Egamberdieva D, Abd-Allah EF, Teixeira da Silva JA. 2016. Chapter 20 – Microbially assisted phytoremediation of heavy metal–contaminated soils. In: Ahmad P, editor. Plant metal interaction. Waltham: Elsevier. p. 483–498.
  • He X, Xu M, Wei Q, Tang M, Guan L, Lou L, Xu X, Hu Z, Chen Y, Shen Z, et al. 2020. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf. 205:111333. doi: 10.1016/j.ecoenv.2020.111333.
  • Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné M-N, Buka I, Carpenter DO, Chen A, Huo X, et al. 2016. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect. 124(5):550–555. doi: 10.1289/ehp.1509699.
  • Hossain ML, Huda SMS, Hossain MK. 2009. Effects of industrial and residential sludge on seed germination and growth parameters of Acacia auriculiformis seedlings. J for Res. 20(4):331–336. doi: 10.1007/s11676-009-0056-5.
  • Houzelot V, Laubie B, Pontvianne S, Simonnot M-O. 2017. Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass to recover Ni by agromining. Chem Eng Res Des. 120:26–33. doi: 10.1016/j.cherd.2017.02.002.
  • Jiang B, Adebayo A, Jia J, Xing Y, Deng S, Guo L, Liang Y, Zhang D. 2019. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J Hazard Mater. 362:187–195. doi: 10.1016/j.jhazmat.2018.08.060.
  • Kamran MA, Bibi S, Xu R-k, Hussain S, Mehmood K, Chaudhary HJ. 2017. Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. J Geochem Explor. 182:269–274. doi: 10.1016/j.gexplo.2016.09.005.
  • Kazerooni EA, Maharachchikumbura SSN, Adhikari A, Al-Sadi AM, Kang S-M, Kim L-R, Lee I-J. 2021. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Front Plant Sci. 12:669693. doi: 10.3389/fpls.2021.669693.
  • Khan AL, Bilal S, Halo BA, Al-Harrasi A, Khan AR, Waqas M, Al-Thani GS, Al-Amri I, Al-Rawahi A, Lee I-J, et al. 2017. Bacillus amyloliquefaciens BSL16 improves phytoremediation potential of Solanum lycopersicum during copper stress. J Plant Interact. 12(1):550–559. doi: 10.1080/17429145.2017.1397203.
  • Koutika L-S, Fiore A, Tabacchioni S, Aprea G, Pereira A, Bevivino A. 2020. Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus plantations in the Congolese coastal plains. Sustainability. 12(21):8763. doi: 10.3390/su12218763.
  • Liu A, Wang W, Zheng X, Chen X, Fu W, Wang G, Ji J, Jin C, Guan C. 2022. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere. 302:134900. doi: 10.1016/j.chemosphere.2022.134900.
  • Liu Z, Tran K-Q. 2021. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol Environ Saf. 226:112821. doi: 10.1016/j.ecoenv.2021.112821.
  • Maryam G, Majid NM, Islam MM, Ahmed OH, Abdu A. 2015. Phytoremediation of copper-contaminated sewage sludge by tropical plants. J Trop for Sci. 27(4):535–547.
  • Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID, Redondo-Gómez S, Pajuelo E, Ribas-Carbó M, Mateos-Naranjo E. 2018. PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci. 9:1500. doi: 10.3389/fpls.2018.01500.
  • Mohd SN, Majid NM, Shazili NAM, Abdu A. 2013. Growth performance, biomass and phytoextraction efficiency of Acacia mangium and Melaleuca cajuputi in remediating heavy metal contaminated soil. American Journal of Environmental Sciences. 9(4), 310–316. doi: 10.3844/ajessp.2013.310.316.
  • Naing AH, Maung T-T, Kim CK. 2021. The ACC deaminase-producing plant growth-promoting bacteria: influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol Plant. 173(4):1992–2012. doi: 10.1111/ppl.13545.
  • Neeratanaphan L, Khamma S, Benchawattananon R, Ruchuwararak P, Appamaraka S, Intamat S. 2017. Heavy metal accumulation in rice (Oryza sativa) near electronic waste dumps and related human health risk assessment. Hum Ecol Risk Assess. 23(5):1086–1098. doi: 10.1080/10807039.2017.1300856.
  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol. 51(1):11–17. doi: 10.1007/s12275-013-2330-7.
  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C. 2009. Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int J Phytoremediation. 11(5):479–495. doi: 10.1080/15226510802656243.
  • Rajkumar M, Freitas H. 2008. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol. 99(9):3491–3498. doi: 10.1016/j.biortech.2007.07.046.
  • Reeves RD, Schwartz C, Morel JL, Edmondson J. 2001. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytorem. 3(2):145–172. doi: 10.1080/15226510108500054.
  • Shabir R, Abbas G, Saqib M, Shahid M, Shah GM, Akram M, Niazi NK, Naeem MA, Hussain M, Ashraf F, et al. 2018. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. Int J Phytoremediation. 20(7):739–746. doi: 10.1080/15226514.2017.1413339.
  • Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q. 2013. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot. 43:134–140. doi: 10.1016/j.cropro.2012.08.003.
  • Tognacchini A, Rosenkranz T, van der Ent A, Machinet GE, Echevarria G, Puschenreiter M. 2020. Nickel phytomining from industrial wastes: growing nickel hyperaccumulator plants on galvanic sludges. J Environ Manage. 254:109798. doi: 10.1016/j.jenvman.2019.109798.
  • Ustiatik R, Nuraini Y, Suharjono S, Jeyakumar P, Anderson CWN, Handayanto E. 2022. Endophytic bacteria promote biomass production and mercury-bioaccumulation of Bermuda grass and Indian goosegrass. Int J Phytoremediation. 24(11):1184–1192. doi: 10.1080/15226514.2021.2023461.
  • Vegliò F, Quaresima R, Fornari P, Ubaldini S. 2003. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manag. 23(3):245–252. doi: 10.1016/S0956-053X(02)00157-5.
  • Yang KM, Poolpak T, Pokethitiyook P, Kruatrachue M. 2022. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system. Int J Phytoremediation. 24(14):1505–1517. doi: 10.1080/15226514.2022.2040420.
  • Yongpisanphop J, Babel S, Kurisu F, Kruatrachue M, Pokethitiyook P. 2020. Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees. Environ Technol. 41(27):3598–3606. doi: 10.1080/09593330.2019.1615993.
  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A. 2011. Nickel: an overview of uptake, Essentiality and toxicity in plants. Bull Environ Contam Toxicol. 86(1):1–17. doi: 10.1007/s00128-010-0171-1.
  • Zafar-Ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. 2019. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 9(7):343. doi: 10.3390/agronomy9070343.
  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O. 2014. Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytoremediation. 16(7-12):1058–1072. doi: 10.1080/15226514.2013.810585.
  • Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O. 2016. Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des. 106:26–32. doi: 10.1016/j.cherd.2015.12.009.
  • Zhong D-X, Zhong Z-P, Wu L-H, Xue H, Song Z-W, Luo Y-M. 2015. Thermal characteristics and fate of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator. Fuel Process Technol. 131:125–132. doi: 10.1016/j.fuproc.2014.11.022.
  • Zhu Z, Huang Y, Zha J, Yu M, Liu X, Li H, Zhu X. 2019. Emission and retention of cadmium during the combustion of contaminated biomass with mineral additives. Energy Fuels. 33(12):12508–12517. doi: 10.1021/acs.energyfuels.9b03266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.