136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of brassinosteroid and silicon on growth, antioxidant enzymes, and metal uptake of leafy vegetables under wastewater irrigation

, , ORCID Icon, &

References

  • Abbas M, Parveen Z, Iqbal M, Riazuddin M, Iqbal S, Ahmed M, Bhutto R. 1970. Monitoring of toxic metals (cadmium, lead, arsenic and mercury) in vegetables of Sindh, Pakistan. Kathmandu Univ J Sci, Eng Technol. 6(2):60–65. doi:10.3126/kuset.v6i2.4013.
  • Abdel-Rahman GNE. 2022. Heavy metals, definition, sources of food contamination, incidence, impacts and remediation: a literature review with recent updates. Egypt J Chem. 65(1):419–437. doi:10.21608/ejchem.2021.80825.4004.
  • Agnihotri A, Gupta P, Dwivedi A, Seth CS. 2018. Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta. 248(1):49–68. doi:10.1007/s00425-018-2867-0.
  • Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019:1–14. doi:10.1155/2019/6730305.
  • Ashfaq F, Butt MS, Nazir A, Jamil A. 2018. Compositional analysis of Pakistani green and red cabbage. Pak J Agric Sci. 55(01):191–196. doi:10.21162/PAKJAS/18.6547.
  • Bai B, Nie Q, Zhang Y, Wang X, Hu W. 2021. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J Hydrol. 597:125771. doi:10.1016/j.jhydrol.2020.125771.
  • Bajguz A, Hayat S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem. 47(1):1–8. doi:10.1016/j.plaphy.2008.10.002.
  • Bhaduri AM, Fulekar MH. 2012. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol. 11(1):55–69. doi:10.1007/s11157-011-9251-x.
  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R. 2019. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants (Basel). 8(3):71. doi:10.3390/plants8030071.
  • Binkley D, Stape JL, Ryan MG, Barnard HR, Fownes J. 2002. Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems. 5(1):58–67. doi:10.1007/s10021-001-0055-7.
  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genet Mol Biol. 40(1 suppl 1):373–386. doi:10.1590/1678-4685-GMB-2016-0087.
  • Chance B, Maehly AC. 1955. [136] Assay of catalases and peroxidases. Meth Enzymol. 2:764–775. doi:10.1016/S0076-6879(55)02300-8.
  • Chaoua S, Boussaa S, El Gharmali A, Boumezzough A. 2019. Impact of irrigation with waste water on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci. 18(4):429–436. doi:10.1016/j.jssas.2018.02.003.
  • Chary NS, Kamala CT, Raj DS. 2008. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf. 69(3):513–524. doi:10.1016/j.ecoenv.2007.04.013.
  • Collinge P. 2021. ‘He shall have care of the garden, its cultivation and produce’: Workhouse Gardens and Gardening, c. 1780‐1835. J Eighteenth Century Stud. 44(1):21–39. doi:10.1111/1754-0208.12717.
  • Cui JX, Zhou YH, Ding JG, Xia XJ, Shi KA, Chen SC, Asami T, Chen Z, Yu JG. 2011. Role of nitric oxide in hydrogen peroxide‐dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ. 34(2):347–358. doi:10.1111/j.1365-3040.2010.02248.x.
  • Das S. 2023. Contributions of crop-wild relatives toward broadening the list of leafy vegetables. Int J Veg Sci. 29(2):95–108. doi:10.1080/19315260.2022.2132569.
  • Debona D, Rodrigues FA, Datnoff LE. 2017. Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol. 55(1):85–107. doi:10.1146/annurev-phyto-080516-035312.
  • Elliott CL, Synder GH. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem. 39(6):1118–1119. doi:10.1021/jf00006a024.
  • Friel S. 2019. Climate change and the people’s health. Small Books Big Ideas in Popul. USA: Oxford University Press. Vol. 2.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi:10.1104/pp.59.2.309.
  • Gupta P, Seth CS. 2023. 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in Brassica juncea L. cv. Varuna. J Plant Growth Regul. 42(7):4207–4222. doi:10.1007/s00344-022-10884-y.
  • Habibi G, Hajiboland R. 2013. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Horticulturae. 25(1):21–29. doi:10.2478/fhort-2013-0003.
  • Hajihashemi S, Mbarki S, Skalicky M, Noedoost F, Raeisi M, Brestic M. 2020. Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum L.). Water. 12(2):607. doi:10.3390/w12020607.
  • Hasan SA, Hayat S, Ahmad A. 2011. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere. 84(10):1446–1451. doi:10.1016/j.chemosphere.2011.04.047.
  • Hayat S, Alyemeni MN, Hasan SA. 2012. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci. 19(3):325–335. doi:10.1016/j.sjbs.2012.03.005.
  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot. 69(2):105–112. doi:10.1016/j.envexpbot.2010.03.004.
  • Hu J, Zhao L, Luo J, Gong H, Zhu N. 2022. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: modifications, applications and perspectives. J Hazard Mater. 438:129437. doi:10.1016/j.jhazmat.2022.129437.
  • Hussain I, Parveen A, Rasheed R, Ashraf MA, Ibrahim M, Riaz S, Afzaal Z, Iqbal M. 2019. Exogenous silicon modulates growth, physio-chemicals and antioxidants in barley (Hordeum vulgare L.) exposed to different temperature regimes. Silicon. 11(6):2753–2762. doi:10.1007/s12633-019-0067-6.
  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P. 2018. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 18(1):146. doi:10.1186/s12870-018-1359-5.
  • Kabir AH, Hossain MM, Khatun MA, Mandal A, Haider SA. 2016. Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.). Front Plant Sci. 7:1117. doi:10.3389/fpls.2016.01117.
  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 38(4):1–1. doi:10.1007/s11738-016-2113-y.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat CA. 2017. Comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi:10.1016/j.gexplo.2016.11.021.
  • Khripach VA, Zhabinskii VN, Khripach NB. 2003. New practical aspects of brassinosteroids and results of their 10 year agricultural use in Russia and Balarus. In: Hayat S, Ahmad A, editors. Brassinosteroids: bioactivity and crop productivity. Dordrecht: Kluwer Academic Publisher. p. 189–230. doi:10.1007/978-94-017-0948-4_9.
  • Kohli SK, Khanna K, Bhardwaj R, Abd_Allah EF, Ahmad P, Corpas FJ. 2019. Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signalling molecules. Antioxidants. 8(12):641. doi:10.3390/antiox8120641.
  • Kumar D, Dhankher OP, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi:10.1016/j.jhazmat.2023.131418.
  • Liu W, Zheng J, Ou X, Liu X, Song Y, Tian C, Rong W, Shi Z, Dang Z, Lin Z. 2018. Effective extraction of Cr (VI) from hazardous gypsum sludge via controlling the phase transformation and chromium species. Environ Sci Technol. 52(22):13336–13342. doi:10.1021/acs.est.8b02213.
  • Lukačová Z, Švubová R, Kohanová J, Lux A. 2013. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul. 70(1):89–103. doi:10.1007/s10725-012-9781-4.
  • Ma J, Wu S, Shekhar NV, Biswas S, Sahu AK. 2020. Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects. Bioinorg Chem Appl. 2020:8886093–8886099. doi:10.1155/2020/8886093.
  • Miri A, Gholamalizadeh A, Hangar A, Ghorbani M, Shirmohammadi E. 2016. The effect of PGPR and alfalfa extract on macronutrient and micronutrient contents of sorghum (Sorghum vulgare). Iran Agric Res. 35(2):96–103. doi:10.22099/IAR.2016.3850.
  • Mittler R, Zilinskas BA. 1991. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 97(3):962–968. doi:10.1104/pp.97.3.962.
  • Odukoya JO, Oshodi AA. 2018. Evaluation of the nutritional qualities of the leaves of Parquetina nigrescens, Launaea taraxacifolia and Solanum nigrum. Eur J Pure Appl Chem. 5(1):18–31.
  • Pradeilles R, Irache A, Wanjohi MN, Holdsworth M, Laar A, Zotor F, Tandoh A, Klomegah S, Graham F, Muthuri SK, et al. 2021. Urban physical food environments drive dietary behaviours in Ghana and Kenya: a photovoice study. Health Place. 71:102647. doi:10.1016/j.healthplace.2021.102647.
  • Prajapati P, Gupta P, Kharwar RN, Seth CS. 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. Int J Phytoremed. 25(4):403–414. doi:10.1080/15226514.2022.2086215.
  • Rahman MF, Ghosal A, Alam MF, Kabir AH. 2017. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf. 135:165–172. doi:10.1016/j.ecoenv.2016.09.019.
  • Santos LR, Batista BL, Lobato AK. 2018. Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynt. 56(2):591–605. doi:10.1007/s11099-017-0700-9.
  • Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, et al. 2017. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma. 254(3):1323–1340. doi:10.1007/s00709-016-1024-5.
  • Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci. 7:196. doi:10.3389/fpls.2016.00196.
  • Singh BK, Singh B, Singh PM. 2018. Breeding cauliflower: a review. Int J Veg Sci. 24(1):58–84. doi:10.1080/19315260.2017.1354242.
  • Singh D, Agnihotri A, Seth CS. 2017. Interactive effects of EDTA and oxalic acid on chromium uptake, translocation and photosynthetic attributes in Indian mustard (Brassica juncea L. var. Varuna). Curr Sci. 112(10):2034–2042. doi: https://www.jstor.org/stable/26163942. doi:10.18520/cs/v112/i10/2034-2042.
  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P. 2014. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules. 4(1):252–267. doi:10.3390/biom4010252.
  • Tang T, Zhou M, Lv J, Cheng H, Wang H, Qin D, Hu G, Liu X. 2022. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf B Biointerfaces. 216:112538. doi:10.1016/j.colsurfb.2022.112538.
  • Thind S, Hussain I, Ali S, Rasheed R, Ashraf MA. 2021. Silicon application modulates growth, physio-chemicals, and antioxidants in wheat (Triticum aestivum L.) exposed to different cadmium regimes. Dose Response. 19(2):15593258211014646. doi:10.1177/15593258211014646.
  • Vardhini BV. 2016. Brassinosteroids are potential ameliorators of heavy metal stresses in plants. Plant Metal Interact. 1:209–237. doi:10.1016/B978-0-12-803158-2.00008-4.
  • Varshney A, Mohan S, Dahiya P. 2021. Growth and antioxidant responses in plants induced by heavy metals present in fly ash. Energy Ecol Environ. 6(2):92–110. doi:10.1007/s40974-020-00191-1.
  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. 2017. Role of silicon on plant–pathogen interactions. Front Plant Sci. 8:701. doi:10.3389/fpls.2017.00701.
  • Wani AS, Tahir I, Ahmad SS, Dar RA, Nisar S. 2017. Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci Hortic. 225:48–55. doi:10.1016/j.scienta.2017.06.063.
  • Wani MS, Tantray YR, Jan I, Singhal VK, Gupta RC. 2020. Lactuca L.: world distribution and importance.
  • Xiao Y, Gong W, Zhao M, Zhang M, Lu N. 2023. Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens Actuators, B. 390:134006. doi:10.1016/j.snb.2023.134006.
  • Zellner W, Datnoff LE. 2020. Silicon as a biostimulant in agriculture. In: Rouphael Y, du Jardin P, Brown P,. De Pascale S, Colla G, editors. Biostimulants for sustainable crop production. Cambridge. UK: Burleigh Dodds Science Publishing. p. 149–195.
  • Zhang L, Qin D, Feng J, Tang T, Cheng H. 2023. Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles. Anal Methods. 15(25):3073–3083. doi:10.1039/d3ay00497j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.