87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluoranthene biotreatment using prominent freshwater microalgae: physiological responses of microalgae and artificial neural network modeling of the bioremoval process

, &

References

  • Ajala SO, Alexander ML. 2020. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng. 11(3):311–326. doi: 10.1007/s40095-019-00333-0.
  • Aksmann A, Tukaj Z. 2004. The effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on the PAR irradiance and CO2 level. Arch Environ Contam Toxicol. 47(2):177–184. doi: 10.1007/s00244-004-2297-9.
  • Ali H. 2010. Biodegradation of synthetic dyes – a review. Water Air Soil Pollut. 213(1–4):251–273. doi: 10.1007/s11270-010-0382-4.
  • Ali MEM, Abd El-Aty AM, Badawy MI, Ali RK. 2018. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol Environ Saf. 151:144–152. doi: 10.1016/j.ecoenv.2018.01.012.
  • Alsulaili A, Refaie A. 2021. Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance. Water Supply. 21(5):1861–1877. doi: 10.2166/ws.2020.199.
  • Altintig E, Alsancak A, Karaca H, Angın D, Altundag H. 2022a. The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem Eng Commun. 209(4):555–569. doi: 10.1080/00986445.2021.1874368.
  • Altintig E, Ates A, Angın D, Topal Z, Aydemir Z. 2022b. Kinetic, equilibrium, adsorption mechanisms of RBBR and MG dyes on chitosan-coated montmorillonite with an ecofriendly approach. Chem Eng Res Des. 188:287–300. doi: 10.1016/j.cherd.2022.09.015.
  • Altintig E, Özcelik TÖ, Aydemir Z, Bozdag D, Kilic E, Yılmaz Yalçıner A. 2023. Modeling of methylene blue removal on Fe3O4 modified activated carbon with artificial neural network (ANN). Int. J Phytoremed. 2023:1–19.
  • Asghari S, Movafeghi A, Salehi Y, Barar J, Omidi Y. 2018. Effects of phenanthrene on growth parameters and antioxidant systems in the green microalga Chlorella vulgaris. Biointerface Res Appl Chem. 8(4):3405–3411.
  • Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O. 2017. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 31(2):61–72. doi: 10.1016/j.fbr.2016.12.001.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Cajthaml T, Möder M, Kačer P, Šašek V, Popp P. 2002. Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr. A 974(1):213–222.
  • Cengiz Sahin S, Aksu S. 2017. Adsorption of dyes from aqueous textile by-products on activated carbon from Scenedesmus obliquus. Anal Lett. 50(11):1812–1830. doi: 10.1080/00032719.2016.1244826.
  • Cerniglia CE. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3(2–3):351–368. doi: 10.1007/BF00129093.
  • Cerniglia CE, Sutherland JB. 2010. Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin Heidelberg: Springer. p. 2079–2110.
  • Chacko JT, Kalidass S. 2011. Enzymatic degradation of azo dyes – a review. Int J Environ Sci. 1:1250–1260.
  • Chance B, Maehly AC. 1955. Assay of catalases and peroxidases. In: Colwick SP, Kalplan NO, editors. Methods in enzymolology. New York: Academic Press. p. 764–775.
  • Chandra S, Khan S, Avula B, Lata H, Yang MH, ElSohly MA, Khan IA. 2014. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complementary Altern Med. 2014:1–9. doi: 10.1155/2014/253875.
  • Domozych D, Ciancia M, Fangel J, Mikkelsen M, Ulvskov P, Willats W. 2012. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 3:82. doi: 10.3389/fpls.2012.00082.
  • El-Baky H, El Baz FK, El-Baroty GS. 2009. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr J Biotechnol. 8(24):7059–7067.
  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M. 2017. Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl Phycol. 29(3):1179–1193. doi: 10.1007/s10811-016-1010-5.
  • Ferdous UT, Balia Yusof ZN. 2021. Insight into potential anticancer activity of algal flavonoids: current status and challenges. Molecules. 26(22):6844. doi: 10.3390/molecules26226844.
  • Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. 2011. Microbial communities to mitigate contamination of PAHs in soil – possibilities and challenges: a review. Environ Sci Pollut Res Int. 18(1):12–30. doi: 10.1007/s11356-010-0371-6.
  • Freile-Pelegrín Y, Robledo D. 2013. Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M, editors. Bioactive compounds from marine foods. Chichester, UK: John Wiley & Sons Ltd. p. 113–129.
  • Guo J, Peng J, Lei Y, Kanerva M, Li Q, Song J, Guo J, Sun H. 2020. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Aquat Toxicol. 219:105376. doi: 10.1016/j.aquatox.2019.105376.
  • Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S. 2016. Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol J. 10(1):363–378. doi: 10.2174/1874070701610010363.
  • Halliwell B. 2006. Reactive species and antioxidants. Redox biology Is a fundamental theme of aerobic life. Plant Physiol. 141(2):312–322.
  • Hamed MM, Khalafallah MG, Hassanien EA. 2004. Prediction of wastewater treatment plant performance using artificial neural networks. Environ Model Softw. 19(10):919–928. doi: 10.1016/j.envsoft.2003.10.005.
  • Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 169(1–3):1–15. doi: 10.1016/j.jhazmat.2009.03.137.
  • He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C. 2017. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep. 7(1):15526. doi: 10.1038/s41598-017-15667-0.
  • Huang L, Lu D, Diao J, Zhou Z. 2012. Enantioselective toxic effects and biodegradation of benalaxyl in Scenedesmus obliquus. Chemosphere. 87(1):7–11. doi: 10.1016/j.chemosphere.2011.11.029.
  • Huba AK, Mirabelli MF, Zenobi R. 2019. Understanding and optimizing the ionization of polycyclic aromatic hydrocarbons in dielectric barrier discharge sources. Anal Chem. 91(16):10694–10701. doi: 10.1021/acs.analchem.9b02044.
  • Ke L, Luo L, Wang P, Luan T, Tam NF-Y. 2010. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol. 101(18):6961–6972. doi: 10.1016/j.biortech.2010.04.011.
  • Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M. 2010. Biological treatment of a dye solution by macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol. 101(7):2252–2258. doi: 10.1016/j.biortech.2009.11.079.
  • Lei A-P, Hu Z-L, Wong Y-S, Tam NF-Y. 2007. Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol. 98(2):273–280. doi: 10.1016/j.biortech.2006.01.012.
  • Li N, Wang P, Wang S, Wang C, Zhou H, Kapur S, Zhang J, Song Y. 2022. Electrostatic charges on microalgae surface: mechanism and applications. J Environ Chem Eng. 10(3):107516. doi: 10.1016/j.jece.2022.107516.
  • Li N, Wu D, Hu N, Fan G, Li X, Sun J, Chen X, Suo Y, Li G, Wu Y. 2018. Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. J Agric Food Chem. 66(13):3572–3580. doi: 10.1021/acs.jafc.8b00869.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD, editor Methods in enzymology. London: Academic Press. p. 350–382.
  • López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M. 2015. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res Int. 22(19):14820–14828. doi: 10.1007/s11356-015-4717-y.
  • Lu J, Jin Q, He Y, Wu J, Zhang W, Zhao J. 2008. Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge. Chemosphere. 71(2):345–351. doi: 10.1016/j.chemosphere.2007.08.068.
  • Mata TM, Melo AC, Simões M, Caetano NS. 2012. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol. 107:151–158. doi: 10.1016/j.biortech.2011.12.109.
  • Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud. 15(4):523–530.
  • Mjalli FS, Al-Asheh S, Alfadala HE. 2007. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J Environ Manage. 83(3):329–338. doi: 10.1016/j.jenvman.2006.03.004.
  • Monteiro CM, Castro PML, Malcata FX. 2009. Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol. 25(9):1573–1578. doi: 10.1007/s11274-009-0046-y.
  • Mousavi SM, Hashemi SA, Iman Moezzi SM, Ravan N, Gholami A, Lai CW, Chiang W-H, Omidifar N, Yousefi K, Behbudi G. 2021. Recent advances in enzymes for the bioremediation of pollutants. Biochem Res Int. 2021:5599204–5599212. doi: 10.1155/2021/5599204.
  • Movafeghi A, Khataee AR, Torbati S, Zarei M, Lisar SYS. 2013. Bioremoval of C.I. Basic Red 46 as an azo dye from contaminated water by Lemna minor L.: modeling of key factor by neural network. Env Prog Sustain Energy. 32(4):1082–1089. doi: 10.1002/ep.11712.
  • Obayori OS, Salam LB. 2010. Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Sci Res Essays. 5(25):4093–4106.
  • Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO. 2021. A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac. 13(3):1594–1618. doi: 10.1111/raq.12536.
  • Olmos-Espejel JJ, García de Llasera MP, Velasco-Cruz M. 2012. Extraction and analysis of polycyclic aromatic hydrocarbons and benzo[a]pyrene metabolites in microalgae cultures by off-line/on-line methodology based on matrix solid-phase dispersion, solid-phase extraction and high-performance liquid chromatography. J Chromatogr A. 1262:138–147. doi: 10.1016/j.chroma.2012.09.015.
  • Papazi A, Assimakopoulos K, Kotzabasis K. 2012. Bioenergetic strategy for the biodegradation of p-cresol by the unicellular green alga Scenedesmus obliquus. PLoS One. 7(12):e51852. doi: 10.1371/journal.pone.0051852.
  • Pathak B, Gupta S, Verma R. 2018. Biosorption and biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microalgae. In: Crini G, Lichtfouse E, editors. Green adsorbents for pollutant removal: fundamentals and design. Cham: Springer International Publishing. p. 215–247.
  • Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A. 2021. A crucial review on polycyclic aromatic hydrocarbons: environmental occurrence and strategies for microbial degradation. Chemosphere. 280:130608. doi: 10.1016/j.chemosphere.2021.130608.
  • Purkayastha J, Bora A, Gogoi HK, Singh L. 2017. Growth of high oil yielding green alga Chlorella ellipsoidea in diverse autotrophic media, effect on its constituents. Algal Res. 21:81–88. doi: 10.1016/j.algal.2016.11.009.
  • Radic S, Babic M, Skobic D, Roje V, Pevalek-Kozlina B. 2010. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf. 73(3):336–342. doi: 10.1016/j.ecoenv.2009.10.014.
  • Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Singh R, Shivay YS, Nain L. 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res Int. 23(7):6608–6620. doi: 10.1007/s11356-015-5884-6.
  • Safonova E, Kvitko K, Kuschk P, Möder M, Reisser W. 2005. Biodegradation of phenanthrene by the green alga Scenedesmus obliquus ES-55. Eng Life Sci. 5(3):234–239. doi: 10.1002/elsc.200520077.
  • Salehi M, Biria D, Shariati M, Farhadian M. 2019. Treatment of normal hydrocarbons contaminated water by combined microalgae – photocatalytic nanoparticles system. J Environ Manage. 243:116–126. doi: 10.1016/j.jenvman.2019.04.131.
  • Santos CE, de Coimbra RN, Bermejo SP, Perez AIG, Cabero MO. 2017. Comparative assessment of pharmaceutical removal from wastewater by the microalgae Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus obliquus. In: Farooq R, editor. Biological wastewater treatment and resource recovery. London: InTech. p. 99–117.
  • Scarponi P, Volpi Ghirardini AM, Bravi M, Cavinato C. 2021. Evaluation of Chlorella vulgaris and Scenedesmus obliquus growth on pretreated organic solid waste digestate. Waste Manag. 119:235–241. doi: 10.1016/j.wasman.2020.09.047.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology. Cambridge: Academic Press, p. 152–178.
  • Subashchandrabose SR, Logeshwaran P, Venkateswarlu K, Naidu R, Megharaj M. 2017. Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Res. 23:223–232. doi: 10.1016/j.algal.2017.02.010.
  • Suzuki N, Koussevitzky S, Mittler R, Miller G. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35(2):259–270.
  • Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D. 2019. Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: the effect of pretreatment on microalgae growth and nutrient removal efficiency. Ecol Eng. 136:1–9. doi: 10.1016/j.ecoleng.2019.05.021.
  • Teng C, Wu S, Gong G. 2019. Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control. 105:219–225. doi: 10.1016/j.foodcont.2019.06.015.
  • Tomar RS, Jajoo A. 2015. Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat. Ecotoxicol Environ Saf. 122:31–36. doi: 10.1016/j.ecoenv.2015.07.002.
  • Tomar RS, Jajoo A. 2021. Enzymatic pathway involved in the degradation of fluoranthene by microalgae Chlorella vulgaris. Ecotoxicology. 30(2):268–276. doi: 10.1007/s10646-020-02334-w.
  • Tomar RS, Rai-Kalal P, Jajoo A. 2022. Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris. Algal Res. 67:102815. doi: 10.1016/j.algal.2022.102815.
  • Torbati S. 2016. Artificial neural network modeling of biotreatment of malachite green by Spirodela polyrhiza: study of plant physiological responses and the dye biodegradation pathway. Process Saf. Environ. 99:11–19. doi: 10.1016/j.psep.2015.10.004.
  • Winterbourn CC, McGrath BM, Carrell RW. 1976. Reactions involving superoxide and normal and unstable haemoglobins. Biochem J. 155(3):493–502. doi: 10.1042/bj1550493.
  • Yadavalli R, Ratnapuram H, Motamarry S, Reddy CN, Ashokkumar V, Kuppam C. 2022. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Conv Bioref. 12(3):683–691. doi: 10.1007/s13399-020-01044-x.
  • Yang J, Li B, Zhang C, Luo H, Yang Z. 2016. pH-associated changes in induced colony formation and growth of Scenedesmus obliquus. Fundam Appl Limnol. 187(3):241–246. doi: 10.1127/fal/2016/0846.
  • Zhang C, Lu J, Wu J, Luo Y. 2017. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera. Sci Total Environ. 609:1322–1328. doi: 10.1016/j.scitotenv.2017.07.187.
  • Zhang Y, Ren L, Chu H, Zhou X, Yao T, Zhang Y. 2019. Optimization for Scenedesmus obliquus Cultivation: the effects of temperature, light Intensity and pH on growth and biochemical composition. Microbiol Biotechnol Lett. 47(4):614–620. doi: 10.4014/mbl.1906.06005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.