62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in microRNAs expression of flax (Linum usitatissimum L.) planted in a cadmium-contaminated soil following the inoculation with root symbiotic fungi

, &

References

  • Akpinar BA, Kantar M, Budak H. 2015. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics. 15(5):587–598. doi: 10.1007/s10142-015-0453-0.
  • Amiri R, Nikbakht A, Etemadi N, Sabzalian MR. 2017. Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis. 73(1):15–25. doi: 10.1007/s13199-016-0466-z.
  • Babadi M, Zalaghi R, Taghavi M. 2019. A non-toxic polymer enhances sorghum-mycorrhiza symbiosis for bioremediation of Cd. Mycorrhiza. 29(4):375–387. doi: 10.1007/s00572-019-00902-5.
  • Badawy S, Helal M, Metwaly A. 2019. Evaluation of Flax plants as a Cd phytoremediator for polluted soils under different chemical and biological treatments. J Soil Sci Agric Eng. 10(4):245–251.
  • Baghaie AH, Aghili F, Jafarinia R. 2019. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ Sci Pollut Res Int. 26(30):30794–30807. doi: 10.1007/s11356-019-06237-0.
  • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297. doi: 10.1016/s0092-8674(04)00045-5.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi: 10.1007/BF00018060.
  • Cai K, Yu Y, Zhang M, Kim K. 2019. Concentration, source, and total health risks of cadmium in multiple media in Densely Populated Areas, China. Int J Environ Res Public Health. 16(13):2269. doi: 10.3390/ijerph16132269.
  • Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W. 2018. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ Pollut. 241:607–615. doi: 10.1016/j.envpol.2018.06.003.
  • Cong TU, Chunrong Z, Huaiman C. 2002. Effect of heavy metals on phosphorus retention by Typic udic ferrisols: equilibrium And Kinetics. Pedosphere. 12:15–24.
  • Cottenie A, Veroo M, Kickens L, Velgh G, Camery R. 1980. Chemical analysis for plant and soils. laboratory of analytical and agrochemistory. State Univ Ghent, Belgium. 42:280–284.
  • Devers EA, Branscheid A, May P, Krajinski F. 2021. Stars and symbiosis: microRNA- and microRNA-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 156(4):1990–2010. doi: 10.1104/pp.111.172627.
  • Ding YF, Zhu C. 2009. The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun. 386(1):6–10. doi: 10.1016/j.bbrc.2009.05.137.
  • Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C. 2013. Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS One. 8(12):e81471. doi: 10.1371/journal.pone.0081471.
  • Gao J, Luo M, Peng H, Chen F, Li W. 2019. Characterization of cadmium-responsive microRNAs and their target genes in maize (Zea mays) roots. BMC Mol Biol. 20(1):14. doi: 10.1186/s12867-019-0131-1.
  • Grace C, Stribley DP, Safer A. 1991. Procedure for root staining of vesicular arbuscular mycorrhizal fungi. Mycol Res. 95(10):1160–1162. doi: 10.1016/S0953-7562(09)80005-1.
  • Hijri M. 2016. Analysis of a large dataset form field mycorrhizal inoculation trials on potato showed highly significant increase in yield. Mycorrhiza. 26(3):209–214. doi: 10.1007/s00572-015-0661-4.
  • Huang X, Wang L, Zhu S, Ho SH, Wu J, Kalita PK, Ma F. 2018. Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.). ex Steud. Ecotoxicol Environ Saf. 149:43–50. doi: 10.1016/j.ecoenv.2017.11.011.
  • Jagadeeswaran G, Saini A, Sunkar R. 2004. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta. 229(4):1009–1014. doi: 10.1007/s00425-009-0889-3.
  • Janeeshma E, Puthur JT. 2020. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol. 202(1):1–16. doi: 10.1007/s00203-019-01730-z.
  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT. 2019. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci. 21:1–27.
  • Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plant. 59(4):609–619. doi: 10.1007/s10535-015-0549-3.
  • Khan MN, Zhang J, Luo T, Liu J, Ni F, Rizwan M, Fahad S, Hu L. 2019. Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiol Plant. 41(2):25. doi: 10.1007/s11738-019-2812-2.
  • Kintlová M, Vrána J, Hobza R, Blavet N, Hudzieczek V. 2021. Transcriptome response to cadmium exposure in barley (Hordeum vulgare L.). Front Plant Sci. 12:629089. doi: 10.3389/fpls.2021.629089.
  • Kobae Y. 2019. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front Environ Sci. 6:159. doi: 10.3389/fenvs.2018.00159.
  • Kramer MF. 2011. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 15(15):10.
  • Kullu B, Patra DK, Acharya S, Pradhan C, Patra HK. 2020. AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica, a mycorrhizal phytoremediation approach. Chemosphere. 258:127337. doi: 10.1016/j.chemosphere.2020.127337.
  • Liang CC, Li T, Xiao YP, Liu MJ, Zhang HB, Zhao ZW. 2009. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremediation. 11(8):692–703. doi: 10.1080/15226510902787310.
  • Lindsay WL, Norvell WA. 1978. Development of a Dtpa soil test for zinc, iron, manganese, and copper. Soil Science Soc of Amer J. 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y. 2018. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere. 194:495–503. doi: 10.1016/j.chemosphere.2017.12.025.
  • Lu F, Lee C, Wang C. 2015. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J. 3:12–66.
  • Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. 2022. MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin Signaling. Int J Mol Sci. 23(1):510. doi: 10.3390/ijms23010510.
  • Olsen SR, Sommer LE. 1982. Phosphorus. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis, part 2, Madison (WI): ASA, SSSA; p. 403–429.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–IN18. doi: 10.1016/S0007-1536(70)80110-3.
  • Qiu ZB, Li XJ, Zhao YY, Zhang MM, Wan YL, Cao DC, Lu SF, Lin JX. 2015. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir. J Exp Bot. 66(11):3041–3054. doi: 10.1093/jxb/erv103.
  • Rizwan M, Ali S, Abbas T, Rehman MZ, Hannan F, Keller C, Al-Wabel MI, Ok YS. 2016. Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf. 130:43–53. doi: 10.1016/j.ecoenv.2016.04.001.
  • Sabia E, Claps S, Morone G, Bruno A, Sepe L, Aleandri R. 2015. Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects. Italian J Agron. 10:607.
  • Santoro DF, Sicilia A, Testa G, Cosentino SL, Lo Piero AR. 2022. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genomics. 23(1):427. doi: 10.1186/s12864-022-08605-6.
  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN. 2020. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol. 249:71–131. doi: 10.1007/398_2019_24.
  • Seymour NP, Edwards DG, Thompson JP. 2019. A dual rescaled Mitscherlich model of the simultaneous savings in phosphorus and zinc fertilizer from arbuscular mycorrhizal fungal colonisation of linseed (Linum usitatissimum L.). Plant Soil. 440(1–2):97–118. doi: 10.1007/s11104-019-04065-2.
  • Shavalikohshori O, Zalaghi R, Sorkheh K, Enaytizamir N. 2019. The expression of proline production/degradation genes under salinity and cadmium stresses in Triticum aestivum inoculated with Pseudomonas sp. Int J Environ Sci Technol. 17(4):2233–2242. doi: 10.1007/s13762-019-02551-9.
  • Sheng XF, Xia JJ. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere. 64(6):1036–1042. doi: 10.1016/j.chemosphere.2006.01.051.
  • Sposito G, Lund LJ, Chang AC. 1982. Trace metal chemistry in arid-zone amended with sewage sludge: i. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Sci Soc Am J. 46(2):260–264. doi: 10.2136/sssaj1982.03615995004600020009x.
  • Tabande L, Sepehri M, Yasrebi J, Zarei M, Ghasemi-Fasaei R, Khatabi B. 2022. A comparison between the function of Serendipita indica and Sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.). Environ Sci Pollut Res Int. 29(6):8790–8803. doi: 10.1007/s11356-021-16287-y.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Boil Biochem. 1(4):301–307. doi: 10.1016/0038-0717(69)90012-1.
  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. 117:28–40. doi: 10.1016/j.envexpbot.2015.05.001.
  • Usman K, Al-Ghouti MA, Abu-Dieyeh MH. 2018. Phytoremediation: halophytes as promising heavy metal hyperaccumulators. In: Saleh M, Aglan RF, editors. Heavy metals. London: Intechopen.
  • Vilela LAF, Barbosa MV. 2019. Contribution of arbuscular mycorrhizal fungi in promoting cadmium tolerance in plants. In: Hasanuzzaman M, Parasad M, Nahar K, editors. Cadmium tolerance in plants. 1st edition. New York: Academic Press; p. 553–586.
  • Wang FY, Lin XG, Yin R. 2007. Effect of arbus mycorrhizal fungal inoculationon heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation. 9(4):345–353. doi: 10.1080/15226510701476214.
  • Wang X, Fan X, Wang W, Song F. 2022. Use of Serendipita indica to improve soybean growth, physiological properties, and soil enzymatic activities under different Cd concentrations. Chem Biol Technol Agric. 9(1):66. doi: 10.1186/s40538-022-00331-1.
  • Wu MF, Tian Q, Reed JW. 2006. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development. 133(21):4211–4218. doi: 10.1242/dev.02602.
  • Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Lv J, Li G, Zhang Z, Zhang J, et al. 2016. Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses. J Hazard Mater. 316:34–42. doi: 10.1016/j.jhazmat.2016.05.017.
  • Zalaghi R, Norouzi Masir M, Moezzi A. 2019. Effects of Cd on soil microbial biomass depend upon its soil fraction distribution. Toxicol Environ Chem. 101:9–10.
  • Zalaghi R, Safari-Sinegani AA. 2014. The importance of different forms of Pb on diminishing biological activities in a calcareous soil. Chem Ecol. 30(5):446–462. doi: 10.1080/02757540.2013.871271.
  • Zhang F, Liu M, Li Y, Che Y, Xiao Y. 2019. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ. 655:1150–1158. doi: 10.1016/j.scitotenv.2018.11.317.
  • Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, et al. 2013. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease. Mol Plant. 6(2):301–310. doi: 10.1093/mp/sst002.
  • Zhou ZS, Song JB, Yang ZM. 2012. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot. 63(12):4597–4613. doi: 10.1093/jxb/ers136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.