128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Actas Pink-2B dye removal in biochar nanocomposites augmented vertical flow constructed wetland (VF-CWs)

, , , , , & show all

References

  • Abbasi T, Abbasi S. 2010. Factors which facilitate wastewater treatment by aquatic weeds – the mechanism of the weeds’ purifying action. Int J Environ Stud. 67(3):349–371. doi:10.1080/00207230902978380.
  • Abdelhakeem SG, Aboulroos SA, Kamel MM. 2016. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J Adv Res. 7(5):803–814. doi:10.1016/j.jare.2015.12.002.
  • Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS. 2013. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol Eng. 61:460–468. doi:10.1016/j.ecoleng.2013.10.010.
  • Agarry SE, Oghenejoboh KM, Latinwo GK, Owabor CN. 2020. Biotreatment of petroleum refinery wastewater in vertical surface-flow constructed wetland vegetated with Eichhornia crassipes: lab-scale experimental and kinetic modelling. Environ Technol. 41(14):1793–1813. doi:10.1080/09593330.2018.1549106.
  • Agegnehu G, Jemal K, Abebe A, Lulie B. 2019. Plant growth and oil yield response of lemon grass (Cymbopogon citratuc L.) to biochar application. Ethiop J Agric Sci. 29:1–12.
  • Al-Isawi R, Sani A, Almuktar S, Scholz M. 2015. Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons. Water Sci Technol. 71(6):938–946. doi:10.2166/wst.2015.054.
  • Benny CK, Chakraborty S. 2023. Dyeing wastewater treatment in horizontal–vertical constructed wetland using organic waste media. J Environ Manage. 331:117213. doi:10.1016/j.jenvman.2023.117213.
  • Beutler M, Wiltshire K, Meyer B, Moldaenke C, Luring C, Meyerhofer M, Hansen U. 2014. APHA (2005), Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association.
  • Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, et al. 2022. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: a two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother. 155:113658. doi:10.1016/j.biopha.2022.113658.
  • Bohórquez E, Paredes D, Arias CA. 2017. Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: effect of different design and operational parameters. Environ Technol. 38(2):199–208. doi:10.1080/09593330.2016.1230650.
  • Chand N, Kumar K, Suthar S. 2022. Enhanced wastewater nutrients removal in vertical subsurface flow constructed wetland: effect of biochar addition and tidal flow operation. Chemosphere. 286(Pt 2):131742. doi:10.1016/j.chemosphere.2021.131742.
  • Chen X, Lin QM, Rizwan M, Zhao XR, Li GT. 2019. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment. J Integr Agric. 18(7):1486–1495. doi:10.1016/S2095-3119(19)62573-6.
  • Cui X, Wang J, Wang X, Khan MB, Lu M, Khan KY, Song Y, He Z, Yang X, Yan B, et al. 2022. Biochar from constructed wetland biomass waste: a review of its potential and challenges. Chemosphere. 287(Pt 3):132259. doi:10.1016/j.chemosphere.2021.132259.
  • Datta A, Singh HO, Raja SK, Dixit S. 2021. Constructed wetland for improved wastewater management and increased water use efficiency in resource scarce SAT villages: a case study from Kothapally village, in India. Int J Phytoremediation. 23(10):1067–1076. doi:10.1080/15226514.2021.1876627.
  • Deng S, Chen J, Chang J. 2021. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: performance and ecological benefits. J Cleaner Prod. 293:126156. doi:10.1016/j.jclepro.2021.126156.
  • Feng L, Yuan G, Xiao L, Wei J, Bi D. 2021. Biochar modified by nano-manganese dioxide as adsorbent and oxidant for oxytetracycline. Bull Environ Contam Toxicol. 107(2):269–275. doi:10.1007/s00128-020-02813-0.
  • Gajewska M, Skrzypiec K, Jóźwiakowski K, Mucha Z, Wójcik W, Karczmarczyk A, Bugajski P. 2020. Kinetics of pollutants removal in vertical and horizontal flow constructed wetlands in temperate climate. Sci Total Environ. 718:137371. doi:10.1016/j.scitotenv.2020.137371.
  • Goswami L, Kushwaha A, Kafle SR, Kim B-S. 2022. Surface modification of biochar for dye removal from wastewater. Catalysts. 12(8):817. doi:10.3390/catal12080817.
  • Goyal S, Sharma G, Bhardwaj K. 2009. Decolorization of synthetic dye (methyl red) wastewater using constructed wetlands having upflow and downflow loading formate. Rasayan J Chem. 2:329–331.
  • Gupta P, Ann TW, Lee SM. 2016. Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environ Eng Res. 21(1):36–44. doi:10.4491/eer.2015.067.
  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. 2018a. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci Total Environ. 645:966–973. doi:10.1016/j.scitotenv.2018.07.163.
  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. 2018b. Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: phytoremediation advances in the field. J Environ Manage. 224:387–395. doi:10.1016/j.jenvman.2018.07.057.
  • Hussein A, Scholz M. 2018. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Environ Sci Pollut Res Int. 25(7):6870–6889. doi:10.1007/s11356-017-0992-0.
  • Imran M, Iqbal MM, Iqbal J, Shah NS, Khan ZUH, Murtaza B, Amjad M, Ali S, Rizwan M. 2021. Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: modeling, thermodynamics and reusability. J Hazard Mater. 401:123338. doi:10.1016/j.jhazmat.2020.123338.
  • Ji Z, Tang W, Pei Y. 2022. Constructed wetland substrates: a review on development, function mechanisms, and application in contaminants removal. Chemosphere. 286(Pt 1):131564. doi:10.1016/j.chemosphere.2021.131564.
  • Khan MB, Cui X, Jilani G, Lazzat U, Zehra A, Hamid Y, Hussain B, Tang L, Yang X, He Z. 2019. Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality. Sci Total Environ. 684:597–609. doi:10.1016/j.scitotenv.2019.05.370.
  • Kheradmand A, Negarestani M, Kazemi S, Shayesteh H, Javanshir S, Ghiasinejad H. 2022. Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Sci Rep. 12(1):14623. doi:10.1038/s41598-022-19056-0.
  • Leiva AM, Gutierrez E, Arias CA, Vidal G. 2021. Influence of water quality parameters on the removal of triclosan and ibuprofen in vertical subsurface flow constructed wetlands using multivariate analysis. Environ Technol Innov. 24:101846. doi:10.1016/j.eti.2021.101846.
  • Li J, Gellerstedt G, Toven K. 2009. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol. 100(9):2556–2561. doi:10.1016/j.biortech.2008.12.004.
  • Li Z, Liu D, Huang W, Wei X, Huang W. 2020. Biochar supported CuO composites used as an efficient peroxymonosulfate activator for highly saline organic wastewater treatment. Sci Total Environ. 721:137764. doi:10.1016/j.scitotenv.2020.137764.
  • Mesquita C, Albuquerque A, Amaral L, Nogueira R. 2018. Effectiveness and temporal variation of a full-scale horizontal constructed wetland in reducing nitrogen and phosphorus from domestic wastewater. ChemEngineering. 2(1):3. doi:10.3390/chemengineering2010003.
  • Mkilima T, Meiramkulova K, Nurbala U, Zandybay A, Khusainov M, Nurmukhanbetova N, Tastanova L, Mashan T, Meirbekov A. 2021. Investigating the influence of column depth on the treatment of textile wastewater using natural zeolite. Molecules. 26(22):7030. doi:10.3390/molecules26227030.
  • Munir R, Ali K, Naqvi SAZ, Maqsood MA, Bashir MZ, Noreen S. 2022. Biosynthesis of Leucaena Leucocephala leaf mediated ZnO, CuO, MnO2, and MgO based nano-adsorbents for Reactive Golden Yellow-145 (RY-145) and Direct Red-31 (DR-31) dye removal from textile wastewater to reuse in agricultural purpose. Sep Purif Technol. 306:122527. doi:10.1016/j.seppur.2022.122527.
  • Munir R, Ali K, Naqvi SAZ, Muneer A, Bashir MZ, Maqsood MA, Noreen S. 2023. Green metal oxides coated biochar nanocomposites preparation and its utilization in vertical flow constructed wetlands for reactive dye removal: performance and kinetics studies. J Contam Hydrol. 256:104167. doi:10.1016/j.jconhyd.2023.104167.
  • Narayan M, Srivastava PSR. 2019. A review of constructed wetland coupled with microbial fuel cell: a recently emerged technology. Pharma Innov J. 8(4):422–442.
  • Nawaz N, Ali S, Shabir G, Rizwan M, Shakoor MB, Shahid MJ, Afzal M, Arslan M, Hashem A, Abd_Allah EF, et al. 2020. Bacterial augmented floating treatment wetlands for efficient treatment of synthetic textile dye wastewater. Sustainability. 12(9):3731. doi:10.3390/su12093731.
  • Nguyen XC, Tran TP, Hoang VH, Nguyen TP, Chang SW, Nguyen DD, Guo W, Kumar A, La DD, Bach QV. 2020. Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. Sci Total Environ. 713:136404. doi:10.1016/j.scitotenv.2019.136404.
  • Noreen S, Ismail S, Ibrahim SM, Kusuma HS, Nazir A, Yaseen M, Khan MI, Iqbal M. 2020. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Z Phys Chem. 235(8):1055–1075. doi:10.1515/zpch-2019-1599.
  • Nyieku FE, Essandoh HM, Armah FA, Awuah E. 2020. Joint influence of hydraulic load and hydraulic retention time on oilfields wastewater contaminant removal dynamics in free water surface flow constructed wetland. SN Appl Sci. 2:2180. doi:10.1007/s42452-020-03751-6.
  • Ong SA, Ho LN, Wong YS, Chen SF, Viswanathan M, Bahari R. 2012. Mineralization of diazo dye (Reactive Black 5) in wastewater using recirculated up-flow constructed wetland reactor. Desalin Water Treat. 46(1–3):312–320. doi:10.1080/19443994.2012.677558.
  • Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, Teoh TP, Lehl HK, Thung W-E. 2020. Constructed wetland–microbial fuel cell for azo dyes degradation and energy recovery: influence of molecular structure, kinetics, mechanisms and degradation pathways. Sci Total Environ. 720:137370. doi:10.1016/j.scitotenv.2020.137370.
  • Parde D, Patwa A, Shukla A, Vijay R, Killedar DJ, Kumar R. 2021. A review of constructed wetland on type, treatment and technology of wastewater. Environ Technol Innov. 21:101261. doi:10.1016/j.eti.2020.101261.
  • Pérez M, Hernández J, Bossens J, Jiménez T, Rosa E, Tack F. 2014. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal. Water Sci Technol. 70(1):76–81. doi:10.2166/wst.2014.183.
  • Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman S. 2020. Design, operation and optimization of constructed wetland for removal of pollutant. Int J Environ Res Public Health. 17(22):8339. doi:10.3390/ijerph17228339.
  • Rehman F, Pervez A, Mahmood Q, Nawab B. 2017. Wastewater remediation by optimum dissolve oxygen enhanced by macrophytes in constructed wetlands. Ecol Eng. 102:112–126. doi:10.1016/j.ecoleng.2017.01.030.
  • Rodrigues A, Machado A, Nóbrega JM, Albuquerque A, Brito A, Nogueira R. 2014. A poly-ε-caprolactone based biofilm carrier for nitrate removal from water. Int J Environ Sci Technol. 11(2):263–268. doi:10.1007/s13762-013-0250-z.
  • Saba B, Jabeen M, Khalid A, Aziz I, Christy AD. 2015. Effectiveness of rice agricultural waste, microbes and wetland plants in the removal of reactive black-5 azo dye in microcosm constructed wetlands. Int J Phytoremediation. 17(11):1060–1067. doi:10.1080/15226514.2014.1003787.
  • Saiyood S, Vangnai A, Inthorn D, Thiravetyan P. 2012. Treatment of total dissolved solids from plastic industrial effluent by halophytic plants. Water Air Soil Pollut. 223(8):4865–4873. doi:10.1007/s11270-012-1242-1.
  • Sánchez M, Gonzalo OG, Yáñez S, Ruiz I, Soto M. 2021. Influence of nutrients and pH on the efficiency of vertical flow constructed wetlands treating winery wastewater. J Water Process Eng. 42:102103. doi:10.1016/j.jwpe.2021.102103.
  • Scholz M. 2023. Wetlands for water pollution control. Amsterdam: Elsevier.
  • Sehar S, Naz I, Khan S, Naeem S, Perveen I, Ali N, Ahmed S. 2016. Performance evaluation of integrated constructed wetland for domestic wastewater treatment. Water Environ Res. 88(3):280–287. doi:10.2175/106143016X14504669767814.
  • Shen Z, Zhang J, Hou D, Tsang DC, Ok YS, Alessi DS. 2019. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ Int. 122:357–362. doi:10.1016/j.envint.2018.11.045.
  • Sinha A, Lulu S, Vino S, Banerjee S, Acharjee S, Osborne WJ. 2018. Degradation of reactive green dye and textile effluent by Candida sp. VITJASS isolated from wetland paddy rhizosphere soil. J Environ Chem Eng. 6(4):5150–5159. doi:10.1016/j.jece.2018.08.004.
  • Sivakumar D, Shankar D, Dhivya P, Balasubramanian K. 2014. Bioaccumulation study by Lemna gibba Lin. Pollut Res. 33:531–536.
  • Sonu K, Sogani M, Syed Z. 2021. Integrated constructed wetland-microbial fuel cell using biochar as wetland matrix: influence on power generation and textile wastewater treatment. ChemistrySelect. 6(32):8323–8328. doi:10.1002/slct.202102033.
  • Sonu K, Sogani M, Syed Z, Dongre A, Sharma G. 2020. Effect of corncob derived biochar on microbial electroremediation of dye wastewater and bioenergy generation. ChemistrySelect. 5(31):9793–9798. doi:10.1002/slct.202002652.
  • Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water. 12(12):3561. doi:10.3390/w12123561.
  • Tanner C, Long Nguyen M, Sukias J. 2003. Using constructed wetlands to treat subsurface drainage from intensively grazed dairy pastures in New Zealand. Water Sci Technol. 48(5):207–213. doi:10.2166/wst.2003.0322.
  • Tee HC, Lim PE, Seng CE, Nawi MAM, Adnan R. 2015. Enhancement of azo dye acid orange 7 removal in newly developed horizontal subsurface-flow constructed wetland. J Environ Manage. 147:349–355. doi:10.1016/j.jenvman.2014.09.025.
  • Tusief Q, Mohsin M, Hussan Malik M, Asghar HN, Sardar S. 2022. Textile wastewater treatment through plant–microbe synergism in a floating treatment wetland system. AATCC J Res. 9(4):182–193. doi:10.1177/24723444221103679.
  • Verma R, Suthar S. 2018. Performance assessment of horizontal and vertical surface flow constructed wetland system in wastewater treatment using multivariate principal component analysis. Ecol Eng. 116:121–126. doi:10.1016/j.ecoleng.2018.02.022.
  • Vymazal J, Březinová T. 2015. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int. 75:11–20. doi:10.1016/j.envint.2014.10.026.
  • Wang W, Jia T, Qi T, Li S, Degen AA, Han J, Bai Y, Zhang T, Qi S, Huang M, et al. 2022. Root exudates enhanced rhizobacteria complexity and microbial carbon metabolism of toxic plants. iScience. 25(10):105243. doi:10.1016/j.isci.2022.105243.
  • Wang B, Liu Y, Zhang Y, Shen F, Yang G, Zhang X, Wang L, Luo L, He Y, Deng S. 2019. Degradation process and kinetics study of actual urotropine wastewater by Fenton method. DWT. 160:219–228. doi:10.5004/dwt.2019.24133.
  • Wang HX, Xu JL, Sheng LX, Liu XJ. 2018. A review of research on substrate materials for constructed wetlands. MSF. 913:917–929. doi:10.4028/www.scientific.net/MSF.913.917.
  • Xu J, Huang X, Luo P, Zhang M, Li H, Gong D, Liu F, Xiao R, Wu J. 2022. Root exudates release from Myriophyllum aquaticum and effects on nitrogen removal by constructed wetlands. J Cleaner Prod. 375:134095. doi:10.1016/j.jclepro.2022.134095.
  • Yang Y, Ma S, Zhao Y, Jing M, Xu Y, Chen J. 2015. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in Northern China. Sustainability. 7(10):13713–13725. doi:10.3390/su71013713.
  • Yan C, Wang W, Nie M, Ding M, Wang P, Zhang H, Huang G. 2023. Characterization of copper binding to biochar-derived dissolved organic matter: effects of pyrolysis temperature and natural wetland plants. J Hazard Mater. 442:130076. doi:10.1016/j.jhazmat.2022.130076.
  • Yan S, Yu W, Yang T, Li Q, Guo J. 2022. The adsorption of corn stalk biochar for Pb and Cd: preparation, characterization, and batch adsorption study. Separations. 9(2):22. doi:10.3390/separations9020022.
  • Yuan J-H, Xu R-K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol. 102(3):3488–3497. doi:10.1016/j.biortech.2010.11.018.
  • Zaka S, Aqeel M, Mahmood A, Noman A, Rizvi ZF, Sarfraz W, Nazir A, Arshad K, Khalid N. 2023. Integrative evaluation of the ecological hazards by microplastics and heavy metals in wetland ecosystem. Bull Environ Contam Toxicol. 110(4):81. doi:10.1007/s00128-023-03716-6.
  • Zhao Z, Xu C, Zhang X, Song X. 2019. Addition of iron materials for improving the removal efficiencies of multiple contaminants from wastewater with a low C/N ratio in constructed wetlands at low temperatures. Environ Sci Pollut Res Int. 26(12):11988–11997. doi:10.1007/s11356-019-04648-7.
  • Zheng Y, Wan Y, Chen J, Chen H, Gao B. 2020. MgO modified biochar produced through ball milling: a dual-functional adsorbent for removal of different contaminants. Chemosphere. 243:125344. doi:10.1016/j.chemosphere.2019.125344.
  • Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z. 2017. Adsorption properties of nano-MnO2–biochar composites for copper in aqueous solution. Molecules. 22(1):173. doi:10.3390/molecules22010173.
  • Zhou X, Jia L, Liang C, Feng L, Wang R, Wu H. 2018. Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: effects of influent strength. Chem Eng J. 334:1842–1850. doi:10.1016/j.cej.2017.11.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.