104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sequestration of cyanide ions from aqueous medium by physio-chemically fabricated biochar of peels of banana and grape fruit in ecofriendly way

, ORCID Icon, , , , , , , , & show all

References

  • Aichour A, Zaghouane-Boudiaf H, Djafer Khodja H. 2022. Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: characterization, adsorption properties and reuse studies. Arabian J Chem. 15(1):103542. doi: 10.1016/j.arabjc.2021.103542.
  • Akinpelu EA, Amodu OS, Mpongwana N, Ntwampe SKO, Ojumu TV. 2015. Utilization of Beta vulgaris agrowaste in biodegradation of cyanide contaminated wastewater. Biotechnology. Croatia. INTECH:59–75.
  • Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H. 2018. Competent heavy metal adsorption by modified MWCNTs and ­optimization process by experimental design. J Environ Eng. 144(11):04018114. doi: 10.1061/(ASCE)EE.1943-7870.0001456.
  • Anas AK, Pratama SY, Izzah A, Arsyik M. 2021. Sodium dodecylbenzene sulfonate-modified biochar as an adsorbent for the removal of methylene blue. Bull Chem React Eng Catal. 16(1):188–195. doi: 10.9767/bcrec.16.1.10323.188-195.
  • Asgari G, Dayari A. 2018. Experimental dataset on acid treated eggshell for removing cyanide ions from synthetic and industrial wastewaters. Data Brief. 16:442–452. doi: 10.1016/j.dib.2017.11.048.
  • Azevedo DCS, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL. 2007. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. J Microporous Cavalcante Mesoporous Materials. 100(1–3):361–364. doi: 10.1016/j.micromeso.2006.11.024.
  • Bankole DT, Inyinbor AA, Oluyori AP, Arowolo MO. 2024. Adsorptive removal of synthetic food dyes using low-cost biochar: efficiency prediction, kinetics and desorption index evaluation. Bioresource Techn Report. 25:101709. doi: 10.1016/j.biteb.2023.101709.
  • Cammann K. 2012. Working with ion-selective electrodes: chemical laboratory practice. Springer Science & Business Media.
  • Campos MG, Pereira P, Roseiro JC. 2006. Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzyme Microbial Tech. 38(6):848–854. doi: 10.1016/j.enzmictec.2005.08.008.
  • Carter S, Shackley S, Sohi S, Suy T, Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy. 3(2):404–418. doi: 10.3390/agronomy3020404.
  • Chen X, Ren Y, Qu G, Wang Z, Yang Y, Ning P. 2023. A review of environmental functional materials for cyanide removal by adsorption and catalysis. Inorg Chem Commun. 157:111298. doi: 10.1016/j.inoche.2023.111298.
  • Cheng Y, Li A, Shi W, Zhao L. 2024. Magnetic chitosan-functionalized waste carton biochar composites for efficient adsorption of anionic and cationic dyes. Chem Engng J. 481:148535. doi: 10.1016/j.cej.2024.148535.
  • Chergui S, Yeddou AR, Chergui A, Halet F, Nadjemi B, Ould-Dris A. 2022. Removal of cyanide from aqueous solutions by biosorption onto sorghum stems: kinetic, equilibrium, and thermodynamic studies. J Hazard Toxic Radioact Waste. 26(1):04021037. doi: 10.1061/(ASCE)HZ.2153-5515.0000647.
  • Chowdhary P, Bharagava RN, Mishra S, Khan N. 2020. Role of industries in water scarcity and its adverse effects on environment and human health. Environ Concerns Sustain Develop: Volume 1: Air Water Energ Res. 235–256.
  • Dash RR, Balomajumder C, Kumar A. 2009a. Removal of cyanide from water and wastewater using granular activated carbon. Chem Engng J. 146(3):408–413. doi: 10.1016/j.cej.2008.06.021.
  • Dash RR, Gaur A, Balomajumder C. 2009b. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater. 163(1):1–11. doi: 10.1016/j.jhazmat.2008.06.051.
  • Dawood S, Kanti Sen T, Phan C. 2016. Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalin Water Treat. 57(59):28964–28980. doi: 10.1080/19443994.2016.1188732.
  • Dwivedi N, Balomajumder C, Mondal P. 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Res Indus. 15:28–40. doi: 10.1016/j.wri.2016.06.002.
  • Eke-Emezie N, Etuk BR, Akpan OP, Chinweoke OC. 2022. Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon. Appl Water Sci. 12(7):157. doi: 10.1007/s13201-022-01679-3.
  • El-Baz A, Hendy I, Dohdoh A, Srour M. 2020. Adsorption technique for pollutants removal; current new trends and future challenges–A Review. J the Egyptian International Journal of Engineering Sciences Srour, and Technology. 32(1):1–24. doi: 10.21608/eijest.2020.45536.1015
  • Eyni H, Tahermansouri H, Kiani F, Jahangiri M. 2019. Kinetics, equilibrium and isotherms of Pb2+ adsorption from aqueous solutions on carbon nanotubes functionalized with 3-amino-5a, 10a-dihydroxybenzo [b] indeno [2, ld] furan-10-one. New Carbon Materials. 34(6):512–523. doi: 10.1016/S1872-5805(19)60027-2.
  • Fleet B, Ho AYW. 1973. An ion-selective electrode system for continuously monitoring cyanide ion, based on a computerized gran plot technique. Talanta. 20(9):793–798. doi: 10.1016/0039-9140(73)80195-x.
  • Fooladvand M, Ramavandi B. 2015. Adsorption potential of NH4Br-soaked activated carbon for cyanide removal from wastewater.
  • Gajendiran V, Deivasigamani P, Sivamani S, Banerjee S. 2024. Biochar from Manihot esculenta stalk as potential adsorbent for removal of reactive yellow dye. Desalin Water Treat. 317:100120. doi: 10.1016/j.dwt.2024.100120.
  • Gonçalves JO, Crispim MM, Rios EC, Silva LF, de Farias BS, Sant’Anna Cadaval Junior TR, de Almeida Pinto LA, Nawaz A, Manoharadas S, Dotto GL. 2024. New and effective cassava bagasse–modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. Environ Sci Pollut Res Int. 31(4):5209–5220. doi: 10.1007/s11356-023-31489-2.
  • Gupta N, Balomajumder C, Agarwal VK. 2012. Adsorption of cyanide ion on pressmud surface: a modeling approach. Chem Engng J. 191:548–556. doi: 10.1016/j.cej.2012.03.028.
  • Hasanzadeh M, Soltaninejad Y, Esmaeili S, Babaei AA. 2022. Preparation, characterization, and application of modified magnetic biochar for the removal of benzotriazole: process optimization, isotherm and kinetic studies, and adsorbent regeneration. Water Sci Technol. 85(10):3036–3054. doi: 10.2166/wst.2022.092.
  • Hassan S, Aziz L, Hussein Kadhim AFA-H. 2012. Biosorption Studies of Cyanide Ion from Wastes by Spent Black Tea Leaves. J Kufa Chem Sci. (6)
  • Hussain S, Anjali KP, Hassan ST, Dwivedi PB. 2018. Waste tea as a novel adsorbent: a review. Appl Water Sci. 8(6):1–16. doi: 10.1007/s13201-018-0824-5.
  • Jeyabalan J, Veluchamy A, V VP, Kumar A, Chandrasekar R, Narayanasamy S. 2023. A review on the laccase assisted decolourization of dyes: recent trends and research progress. J Taiwan Inst Chem Engrs. 151:105081. doi: 10.1016/j.jtice.2023.105081.
  • Kao CM, Chen KF, Liu JK, Chou SM, Chen SC. 2006. Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol. 71(2):228–233. doi: 10.1007/s00253-005-0129-0.
  • Kumar A, Jeyabalan J, Priyan V. V, Charan Patra C, Narayanasamy S. 2023. Fabrication of a novel bio-polymer adsorbent with high adsorptive capacity towards organic dyes. Industrial Crops Products. 203:117166. doi: 10.1016/j.indcrop.2023.117166.
  • Kumar A, Patra C, Kumar Rajendran H, Narayanasamy S. 2022b. Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: synthesis, characterization and phytotoxicity studies. Chemosphere. 307(Pt 2):135806. doi: 10.1016/j.chemosphere.2022.135806.
  • Kumar A, Patra C, Kumar S, Narayanasamy S. 2022a. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res. 206:112604. doi: 10.1016/j.envres.2021.112604.
  • Liang H, Wang J, Wang W, Wang Y, Deng X, Xue Z, Sun Y, He G, Ruan X. 2024. N-doping enriched porous MgO-modified biochar enables efficient anionic acid fuchsin dye removal. Separation Purification Tech. 335:126180. doi: 10.1016/j.seppur.2023.126180.
  • Luo J, Wang Q, Lin L, Zhang S, Zhu X. 2021. Waste plastics complement biochar: innovative approach in curbing toxicants (KCN/NaCN) in N-containing biochar. ACS Sustainable Chem Eng. 9(12):4617–4624. doi: 10.1021/acssuschemeng.1c00226.
  • Manyuchi MM, Sukdeo N, Stinner W. 2022. Potential to remove heavy metals and cyanide from gold mining wastewater using biochar. Phys Chem Earth, Parts A/B/C. 126:103110. doi: 10.1016/j.pce.2022.103110.
  • Maulana I, Takahashi F. 2018. Cyanide removal study by raw and iron-modified synthetic zeolites in batch adsorption experiments. J Water Process Engng. 22:80–86. doi: 10.1016/j.jwpe.2018.01.013.
  • Mehmood I, Bari A, Muhammad Aslam M, Okal EJ, Riaz M, Tahir Ul Qamar M, Adnan M, Ahmed M, Saud S, Wahid F. 2021. Biochar: an adsorbent to remediate environmental pollutants. In Engineering tolerance in crop plants against abiotic stress. Boca Raton: CRC Press.
  • Mohan D, Pittman CU, Jr, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci. 310(1):57–73. doi: 10.1016/j.jcis.2007.01.020.
  • Moussavi G, Khosravi R. 2010. Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: parametric experiments, kinetics and equilibrium analysis. J Hazard Mater. 183(1-3):724–730. doi: 10.1016/j.jhazmat.2010.07.086.
  • Niu H, Volesky B. 2000. Gold‐cyanide biosorption with L‐cysteine. J Chem Technol Biotechnol. 75(6):436–442. doi: 10.1002/1097-4660(200006)75:6<436::AID-JCTB243>3.0.CO;2-O.
  • Pariyar P, Kumari K, Jain MK, Jadhao PS. 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ. 713:136433. doi: 10.1016/j.scitotenv.2019.136433.
  • Patra C, Gupta R, Bedadeep D, Narayanasamy S. 2020. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: a detail insight. Environ Pollut. 266(Pt 2):115102. doi: 10.1016/j.envpol.2020.115102.
  • Patra C, Narayanasamy S. 2022. Polypyrrole complexation on biomass-derived powdered carbon for adsorptive elimination of emerging pharmaceutical contaminant Sulfamethoxazole: a comprehensive insight. J Cleaner Product. 370:133565. doi: 10.1016/j.jclepro.2022.133565.
  • Pondja EA, Jr, Persson KM, Matsinhe NP. 2017. The potential use of cassava peel for treatment of mine water in Mozambique. JEP. 08(03):277–289. doi: 10.4236/jep.2017.83021.
  • Porter N, Drozd JW, Linton JD. 1983. The effects of cyanide on the growth and respiration of Enterobacter aerogenes in continuous culture. J Gen Microbiol. 129(1):7–16. doi: 10.1099/00221287-129-1-7.
  • Pramanik S, Sarkar B, Lahiri S, Ghanta KC, Dutta S. 2022. Application of hybrid artificial neural network (ANN)–particle swarm optimization (PSO) for modelling and optimization of the adsorptive removal of cyanide and phenol from wastewater using agro-waste-derived adsorbent. Appl Water Sci. 12(8):184. doi: 10.1007/s13201-022-01706-3.
  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A. 2018. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere. 199:737–746. doi: 10.1016/j.chemosphere.2018.02.002.
  • Stavropoulos GG, Skodras GS, Papadimitriou KG. 2015. Effect of solution chemistry on cyanide adsorption in activated carbon. Appl Thermal Engng. 74:182–185. doi: 10.1016/j.applthermaleng.2013.09.060.
  • Tasrin S, Mohamed Madhar Fazil S, Senthilmurugan S, Selvaraju N. 2021. Facile preparation of nanocellulose embedded polypyrrole for dye removal: unary and binary process optimization and seed toxicity. Int J Environ Sci Technol. 18(2):365–378. doi: 10.1007/s13762-020-02814-w.
  • Tian D, Liu A, Xiang Y. 2017. Effects of biochar on plant growth and cadmium uptake: Case Studies on Asian lotus (Nelumbo nucifera) and Chinese sage (Salvia miltiorrhiza). J Engng Appl Biochar. 49–69.
  • Tomin O, Vahala R, Yazdani MR. 2024. Synthesis and efficiency comparison of reed straw-based biochar as a mesoporous adsorbent for ionic dyes removal. Heliyon. 10(2):e24722. doi: 10.1016/j.heliyon.2024.e24722.
  • Varadharaj VP, Ramesh G, Kumar A, Jeyabalan J, Narayanasamy S. 2023. Synthesis, characterization, and application of oxidant-modified biochar prepared from sawdust for sequestration of basic fuchsin: isotherm, kinetics, and toxicity studies. Biomass Conv Bioref. 13(11):9525–9536. doi: 10.1007/s13399-023-04210-z.
  • Vashisht Devika, Priyanka, Ibhadon, Alex O., Mehta, Surinder K., Taylor, Martin J.. 2024. Enhanced wastewater remediation using mesoporous activated wheat straw biochars: a dye removal perspective. ACS Sustainable Resour Manage. 2, 355–367, 1 doi: 10.1021/acssusresmgt.3c00109.
  • Wei Y, Chen L, Jiao G, Wen Y, Liao Q, Zhou H, Tang S. 2023. Enhanced removal of metal-cyanide complexes from wastewater by Fe-impregnated biochar: adsorption performance and removal mechanism. Chemosphere. 331:138719. doi: 10.1016/j.chemosphere.2023.138719.
  • Xiong Q, Jiang S, Fang R, Chen L, Liu S, Liu Y, Yin S, Hou H, Wu X. 2021. An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: performance and mechanisms. J Hazard Mater. 408:124465. doi: 10.1016/j.jhazmat.2020.124465.
  • Yang X, Zhu W, Song Y, Zhuang H, Tang H. 2021. Removal of cationic dye BR46 by biochar prepared from Chrysanthemum morifolium Ramat straw: a study on adsorption equilibrium, kinetics and isotherm. J Molecul Liquid. 340:116617. doi: 10.1016/j.molliq.2021.116617.
  • Yu H, L, Gu L, Chen H, Wen D, Zhang H, Tao 2020. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. Bioresour Technol. 316:123971. doi: 10.1016/j.biortech.2020.123971.
  • Zhou B, Wang JJ, Dangal P, Lomnicki S, Roy AD, Park J-H. 2024. A novel sugarcane residue-derived bimetallic Fe/Mn-biochar composite for activation of peroxymonosulfate in advanced oxidation process removal of azo dye: degradation behavior and mechanism. J Water Process Engng. 58:104740. doi: 10.1016/j.jwpe.2023.104740.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.