52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assembly patterns and key taxa of bacterial communities in the rhizosphere soil of moso bamboo (Phyllostachys pubescens) under different Cd and Pb pollution

ORCID Icon, , , , , , , , & show all

References

  • Alotaibi MO, Mohammed AE, Eltom KH. 2022. Metagenomic analysis of bacterial communities of Wadi Namar Lake, Riyadh, Saudi Arabia. Saudi J Biol Sci. 29(5):3749–3758. doi:10.1016/j.sjbs.2022.03.001.
  • Berry D, Widder S. 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 5:219. doi: 10.3389/fmicb.2014.00219.
  • Bian F, Zhong Z, Li C, Zhang X, Gu L, Huang Z, Gai X, Huang Z. 2021. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. J Hazard Mater. 416:125898. doi: 10.1016/j.jhazmat.2021.125898.
  • Bian F, Zhong Z, Zhang X, Yang C, Gai X. 2020. Bamboo—an ­untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere. 246:125750. doi: 10.1016/j.chemosphere.2019.125750.
  • Bian F, Zhong Z, Zhang X, Yang C. 2017. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environ Sci Pollut Res. 24:27244–27253.
  • Bulgarelli D, Rott M, Schlaeppi K, Van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, et al. 2021. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 488(7409):91–95. doi: 10.1038/nature11336.
  • Cao X, Wang X, Tong W, Gurajala HK, Lu M, Hamid Y, Feng Y, He Z, Yang X. 2019. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ Pollut. 252(Pt A):733–741. doi: 10.1016/j.envpol.2019.05.147.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7(5):335–336. doi: 10.1038/nmeth.f.303.
  • Carlier JD, Ettamimi S, Cox CJ, Hammani K, Ghazal H, Costa MC. 2020. Prokaryotic diversity in stream sediments affected by acid mine drainage. Extremophiles. 24(6):809–819. doi: 10.1007/s00792-020-01196-8.
  • Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z, Peng D, Yan W, Liu D. 2015. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of moso bamboo (Phyllostachys pubescens). Sci Rep. 5(1):13554. doi: 10.1038/srep13554.
  • Chen L, Wang FY, Zhang ZQ, Chao HR, He HR, Hu WF, Zeng Y, Duan CJ, Liu J, Fang LC. 2023. Influences of arbuscular mycorrhizal fungi on crop growth and potentially toxic element accumulation in contaminated soils: a meta-analysis. Crit Rev Environ Sci Technol. 53(20):1795–1816. doi: 10.1080/10643389.2023.2183700.
  • Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R. 2018. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Environ Sci Technol. 644:1591–1601.
  • Chu C, Fan M, Song C, Li N, Zhang C, Fu S, Wang W, Yang Z. 2021. Unveiling endophytic bacterial community structures of different rice cultivars grown in a cadmium-contaminated paddy field. Front Microbiol. 12:756327. doi: 10.3389/fmicb.2021.756327.
  • Collin B, Doelsch E, Keller C, Panfili F, Meunier J. 2013. Effects of silicon and copper on bamboo grown hydroponically. Environ Sci Pollut Res Int. 20(9):6482–6495. doi: 10.1007/s11356-013-1703-0.
  • Edgar R. 2013. UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10(10):996–998. doi: 10.1038/nmeth.2604.
  • Fang L, Ju W, Yang C, Duan C, Cui Y, Han F, Shen G, Zhang C. 2019. Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotoxicol Environ Saf. 182:109459.
  • Feng Y, Wu Y, Zhang J, Meng Q, Wang Q, Ma L, Ma X, Yang X. 2018. Ectopic expression of SaNRAMP3 from Sedum alfredii enhanced cadmium root-to-shoot transport in Brassica juncea. Ecotoxicol Environ Saf. 156:279–286. doi: 10.1016/j.ecoenv.2018.03.031.
  • Fernandes J, Almeida C, Andreotti F, Barros L, Almeida T, Mucha A. 2017. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci Total Environ. 581–582:801–810. doi: 10.1016/j.scitotenv.2017.01.015.
  • Galand P, Casamayor E, Kirchman D, Lovejoy C. 2009. Ecology of the rare microbial biosphere of the Arctic ocean. Proc Natl Acad Sci U S A. 106(52):22427–22432. doi: 10.1073/pnas.0908284106.
  • Gottel N, Castro H, Kerley M, Yang Z, Pelletier D, Podar M, Karpinets T, Uberbacher E, Tuskan G, Vilgalys R, et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of populus deltoides roots across contrasting soil types. Appl Environ Microbiol. 77(17):5934–5944. doi: 10.1128/AEM.05255-11.
  • Guo J, Chi J. 2014. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil. 375(1–2):205–214. doi: 10.1007/s11104-013-1952-1.
  • Hassani M, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome. 6(1):58. doi: 10.1186/s40168-018-0445-0.
  • He B, Yun Z, Shi J, Jiang G. 2013. Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chin Sci Bull. 58(2):134–140. doi: 10.1007/s11434-012-5541-0.
  • Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S. 2017. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant sedum alfredii. Environ Sci Technol. 51(10):5675–5684. doi: 10.1021/acs.est.6b06531.
  • Hou J, Liu W, Wu L, Ge Y, Hu P, Li Z, Christie P. 2019. Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Appl Soil Ecol. 133:62–69. doi: 10.1016/j.apsoil.2018.09.009.
  • Huang A, Jiang T, Liu Y, Bai Y, Reed J, Qu B, Goossens A, Nützmann H, Bai Y, Osbourn A. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science. 364(6440):546. doi: 10.1126/science.aau6389.
  • Jacquiod S, Spor A, Wei S, Munkager V, Bru D, Sørensen SJ, Salon C, Philippot L, Blouin M. 2022. Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes. Ecol Lett. 25(1):189–201. doi: 10.1111/ele.13916.
  • Jia X, Dini-Andreote F, Salles J. 2018. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 26(9):738–747. doi: 10.1016/j.tim.2018.02.011.
  • Jin X, Rahman M, Ma C, Zheng X, Wu F, Zhou X. 2023. Silicon modification improves biochar’s ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria. Ecotoxicol Environ Saf. 249:114407. doi: 10.1016/j.ecoenv.2022.114407.
  • Jung J, Philippot L, Park W. 2016. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Sci Rep. 6(1):23012. doi: 10.1038/srep23012.
  • Khan M, Malik R, Muhammad S. 2013. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 93(10):2230–2238. doi: 10.1016/j.chemosphere.2013.07.067.
  • Kulichevskaya I, Danilova O, Tereshina V, Kevbrin V, Dedysh S. 2014. Descriptions of Roseiarcus fermentans gen. nov., sp nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. Int J Syst Evol Microbiol. 64(Pt 8):2558–2565. doi: 10.1099/ijs.0.064576-0.
  • Kumar V, Chandra R. 2020. Metagenomics analysis of rhizospheric bacterial communities of Saccharum arundinaceum growing on organometallic sludge of sugarcane molasses‑based distillery. 3 Biotech. 10(7):316. doi: 10.1007/s13205-020-02310-5.
  • Li B, Xu R, Sun X, Han F, Xiao E, Chen L, Qiu L, Sun WM. 2021. Microbiome–environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere. 263:128227. doi: 10.1016/j.chemosphere.2020.128227.
  • Li S, Chen J, Islam E, Wang Y, Wu J, Ye Z, Yan W, Peng D, Liu D. 2016. Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere. 153:107–114. doi: 10.1016/j.chemosphere.2016.02.062.
  • Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yannarell A, Mackie RI. 2014. Functional potential of soil microbial communities in the maize rhizosphere. PLOS One. 9(11):e112609. doi: 10.1371/journal.pone.0112609.
  • Li Y, Yuan L, Xue S, Liu B, Jin G. 2020. The recruitment of bacterial communities by the plant root system changed by acid mine drainage pollution in soils. FEMS Microbiol Lett. 367(15):1–9. doi: 10.1093/femsle/fnaa117.
  • Liu D, Chen J, Mahmood Q, Li S, Wu J, Ye Z, Peng D, Yan W, Lu K. 2014. Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res Int. 21(23):13615–13624. doi: 10.1007/s11356-014-3271-3.
  • Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP. 2015. Lead accumulation and tolerance of moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B. 16(2):123–130. doi: 10.1631/jzus.B1400107.
  • Liu X, Wang H, Wu Y, Bi Q, Ding K, Lin X. 2022. Manure application effects on subsoils: abundant taxa initiate the diversity reduction of rare bacteria and community functional alterations. Soil Biol Biochem. 174:108816. doi: 10.1016/j.soilbio.2022.108816.
  • Lundberg D, Lebeis S, Paredes S, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio T, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature. 488(7409):86–90. doi: 10.1038/nature11237.
  • Luo J, Gu S, Guo X, Liu Y, Tao Q, Zhao H, Liang Y, Banerjee S, Li T. 2022. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance. Environ Sci Technol. 56(18):12975–12987. doi: 10.1021/acs.est.1c08832.
  • Luo J, Guo X, Tao Q, Li J, Liu Y, Du Y, Liu Y, Liang Y, Li T. 2021. Succession of the composition and co-occurrence networks of rhizosphere microbiota is linked to Cd/Zn hyperaccumulation. Soil Biol Biochem. 153:108120.
  • Lynch M, Neufeld J. 2015. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 13(4):217–229. doi: 10.1038/nrmicro3400.
  • Ma Y, Prasad M, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29(2):248–258. doi: 10.1016/j.biotechadv.2010.12.001.
  • Magoč T, Salzberg S. 2011. FLASH fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27(21):2957–2963. doi: 10.1093/bioinformatics/btr507.
  • Marti R, Bécouze-Lareure C, Ribun S, Marjolet L, Bernardin Souibgui C, Aubin J-B, Lipeme Kouyi G, Wiest L, Blaha D, Cournoyer B. 2017. Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Sci Rep. 7(1):13219. doi: 10.1038/s41598-017-13594-8.
  • Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt J. 2020. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14(1):245–258. doi: 10.1038/s41396-019-0531-8.
  • Oyuela Leguizamo MA, Fernández Gómez WD, Sarmiento MCG. 2017. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands – a review. Chemosphere. 168:1230–1247. doi: 10.1016/j.chemosphere.2016.10.075.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue):D590–D596. doi: 10.1093/nar/gks1219.
  • Rajkumar M, Ae N, Prasad M, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28(3):142–149. doi: 10.1016/j.tibtech.2009.12.002.
  • Rajkumar M, Sandhya S, Prasad M, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv. 30(6):1562–1574. doi: 10.1016/j.biotechadv.2012.04.011.
  • Ren C, Teng Y, Chen X, Shen Y, Xiao H, Wang H. 2021. Impacts of earthworm introduction and cadmium on microbial communities composition and function in soil. Environ Toxicol Pharmacol. 83:103606. doi: 10.1016/j.etap.2021.103606.
  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH a versatile open source tool for metagenomics. PeerJ. 4:e2584. doi: 10.7717/peerj.2584.
  • Sandhu M, Paul AT, Jha PN. 2022. Metagenomic analysis for taxonomic and functional potential of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCB) degrading bacterial communities in steel industrial soil. PLOS one. 17(4):e0266808. doi: 10.1371/journal.pone.0266808.
  • Tkacz A, Cheema J, Chandra G, Grant A, Poole P. 2015. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9(11):2349–2359. doi: 10.1038/ismej.2015.41.
  • Wang C, Zhu B, Guo Y, Tian S, Zhang Z, Hou X. 2022. Assessment of the pollution of soil heavy metal(loid)s and its relation with soil microorganisms in wetland soils. Sustainability. 14(19):12164. doi: 10.3390/su141912164.
  • Wang Q, Chen Z, Zhao J, Ma J, Yu Q, Zou P, Lin H, Ma J. 2022. Fate of heavy metals and bacterial community composition following biogas slurry application in a single rice cropping system. J Soils Sediments. 22(3):968–981. doi: 10.1007/s11368-021-03117-4.
  • Wu Y, Ma L, Liu Q, Sikder M, Vestergård M, Zhou K, Wang Q, Yang X, Feng Y. 2020. Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci Total Environ. 726:138554. doi: 10.1016/j.scitotenv.2020.138554.
  • Wu Y, Ma L, Liu Q, Topalović O, Wang Q, Yang X, Feng Y. 2020. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. Chemosphere. 256:127156. doi: 10.1016/j.chemosphere.2020.127156.
  • Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y. 2020. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. J Hazard Mater. 395:122661. doi: 10.1016/j.jhazmat.2020.122661.
  • Wu Y, Ma L, Zhang X, Topalović O, Liu Q, Feng Y, Yang X. 2020. A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant Soil. 455(1–2):257–270. doi: 10.1007/s11104-020-04684-0.
  • Wu Y, Santos S, Vestergård M, González M, Ma L, Feng Y, Yang X. 2022. A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation. Sci Total Environ. 805:150400. doi: 10.1016/j.scitotenv.2021.150400.
  • Yu F, Liang J, Song J, Wang S, Lu J. 2020. Bacterial community selection of Russula griseocarnosa mycosphere soil. Front Microbiol. 11:347. doi: 10.3389/fmicb.2020.00347.
  • Zhang S, Su Y, Xu D, Zhu S, Zhang H, Liu X. 2018. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production. Bioresour Technol. 258:111–118. doi: 10.1016/j.biortech.2018.02.127.
  • Zhang X, Bian F, Zhong Z, Gai X, Yang C. 2020. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels. J Hazard Mater. 399:123107. doi: 10.1016/j.jhazmat.2020.123107.
  • Zhang X, Gai X, Zhong Z, Bian F, Yang C, Li Y, Wen X. 2021. Understanding variations in soil properties and microbial communities in bamboo plantation soils along a chromium pollution gradient. Ecotoxicol Environ Saf. 222:112507. doi: 10.1016/j.ecoenv.2021.112507.
  • Zhang Z, He P, Hao X, Liu J, Ge T, Li L. 2022. Rare microbial populations as sensitive indicators of bacterial community dissimilarity under different agricultural management practices. Arch Agron Soil Sci. 69(7):1013–1026. doi: 10.1080/03650340.2022.2049254.
  • Zhao X, Huang J, Lu J, Sun Y. 2019. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf. 170:218–226. doi: 10.1016/j.ecoenv.2018.11.136.
  • Zheng J, Zhang J, Gao L, Wang R, Gao J, Dai Y, Li W, Shen G, Kong F, Zhang J. 2021. Effect of straw biochar amendment on tobacco growth, soil properties, and rhizosphere bacterial communities. Sci Rep. 11(1):20727. doi: 10.1038/s41598-021-00168-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.