26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Natural colonizers effectively restore heavy metal polluted wasteland

&

References

  • Alahabadi A, Ehrampoush MH, Miri M, Ebrahimi Aval H, Yousefzadeh S, Ghaffari HR, Ahmadi E, Talebi P, Abaszadeh Fathabadi Z, Babai F, et al. 2017. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 172:459–467. doi: 10.1016/j.chemosphere.2017.01.045.
  • Amin AS, Kassem MA. 2012. Chromium speciation in environmental samples using a solid phase spectrophotometric method. Spectrochim Acta A Mol Biomol Spectrosc. 96:541–547. doi: 10.1016/j.saa.2012.05.020.
  • [APHA] American Public Health Association. 1999. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC.
  • Azadi A, Baghernejad M, Gholami A, Shakeri S. 2021. Forms and distribution pattern of soil Fe (iron) and Mn (manganese) oxides due to long-term rice cultivation in Fars Province Southern Iran. Commun Soil Sci Plant Anal. 52(16):1894–1911. doi: 10.1080/00103624.2021.1900226.
  • Bellezoni RA, Iwai CK, Elis VR, da Silva Paganini W, Hamada J. 2014. Small-scale landfills: impacts on groundwater and soil. Environ Earth Sci. 71(5):2429–2439. doi: 10.1007/s12665-013-2643-1.
  • Beretta AN, Silbermann AV, Paladino L, Torres D, Bassahun D, Musselli R, García-Lamohte A. 2014. Soil texture analyses by hydrometer: modifications of the Bouyoucos method. Cien Invest Agr. 41(2):263–271. doi: 10.4067/S0718-16202014000200013.
  • Bhargava A, Carmona FF, Bhargava M, Srivastava S. 2012. Approaches for enhanced phytoextraction of heavy metals. J Environ Manage. 105:103–120. doi: 10.1016/j.jenvman.2012.04.002.
  • Bose S, Jain A, Rai V, Ramanathan AL. 2008. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil. J Hazard Mater. 160(1):187–193. doi: 10.1016/j.jhazmat.2008.02.119.
  • Choppala G, Kunhikrishnan A, Seshadri B, Park JH, Bush R, Bolan N. 2018. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J Geochem Explor. 184:255–260. doi: 10.1016/j.gexplo.2016.07.012.
  • Dalal RC, Moloney D. 2000. Sustainability indicators of soil health and biodiversity. In: Hale P, Petrie A, Moloney D, Sattler P, editors. Management for sustainable ecosystems. Brisbane: Centre for Conservation Biology, University of Queensland. p. 101–108.
  • Ekundayo EO, Fagbami AA. 1996. Land-use/land-cover and its association with soils of the Oyo state in south-western Nigeria. Int J Trop Agric. 14(1/4):21–33.
  • Ekundayo EO. 2003. Suitability of waste disposal sites for refuse disposal in Benin city, Nigeria. Niger J Soil Sci. 13:21–27.
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis, part 1. Madison: ASA and SSSA. p. 403–407.
  • Han R, Dai H, Zhan J, Wei S. 2019. Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J Clean Prod. 239:118055. doi: 10.1016/j.jclepro.2019.118055.
  • Iwuozor KO, Emenike EC, Aniagor CO, Iwuchukwu FU, Ibitogbe EM, Okikiola TB, Omuku PE, Adeniyi AG. 2022. Removal of pollutants from aqueous media using cow dung-based adsorbents. Curr Res Green Sustain Chem. 5:100300. doi: 10.1016/j.crgsc.2022.100300.
  • Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX. 2016. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol. 98:112–120. doi: 10.1016/j.apsoil.2015.10.003.
  • Kameriya PR. 1995. Characterization of soils of agro-climatic zone of transitional plain of inland drainage (zone II-A) of Rajasthan. J Indian Soc Soil Sci. 42:100–101.
  • Khan AZ, Khan S, Muhammad S, Baig SA, Khan A, Nasir MJ, Azhar M, Naz A. 2021. Lead contamination in shooting range soils and its phytoremediation in Pakistan: a greenhouse experiment. Arab J Geosci. 14(1):1–7. doi: 10.1007/s12517-020-06301-x.
  • Kjeldahl J. 1883. New method for the determination of nitrogen in organic substances. Z Anal Chem. 22(1):366–383. doi: 10.1007/BF01338151.
  • Kumar A, Maiti SK. 2015. Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro Hill, Chaibasa, India. Environ Earth Sci. 74(3):2617–2633. doi: 10.1007/s12665-015-4282-1.
  • Kumar A, Prasad MNV. 2018. Plant–lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf. 166:401–418. doi: 10.1016/j.ecoenv.2018.09.113.
  • Maurya PK, Ali SA, Ahmad A, Zhou Q, da Silva Castro J, Khane E, Ali H. 2020. An introduction to environmental degradation: causes, consequence and mitigation. In: Kumar V, Singh J, Kumar P, editors. Environmental degradation: causes and remediation strategies. Vol 1. Haridwar (Uttarakhand): Agro Environ Media, Agriclture and Environment Science Academy. p. 1–20.
  • Lamb DT, Venkatraman K, Bolan N, Ashwath N, Choppala G, Naidu R. 2014. Phytocapping: an alternative technology for the sustainable management of landfill sites. Crit Rev Environ Sci Technol. 44(6):561–637. doi: 10.1080/10643389.2012.728823.
  • Liu YJ, Zhu YG, Ding H. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut. 145(2):387–390. doi: 10.1016/j.envpol.2006.05.010.
  • Lorestani B, Cheraghi M, Yousefi N. 2011. Phytoremediation potential of native plants growing on a heavy metal contaminated soil of copper mine in Iran. Int J Geol Environ Eng. 5(5):377–382. doi: 10.5281/zenodo.1056941.
  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf. 126:111–121. doi: 10.1016/j.ecoenv.2015.12.023.
  • Mishra A, Singh R, Raghuwanshi NS, Chatterjee C, Froebrich J. 2013. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Sci Total Environ. 468–469 Suppl.:S132–S138. doi: 10.1016/j.scitotenv.2013.05.080.
  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK. 2011. Chromium bioaccumulation in rice grown in contaminated soil and irrigated mine wastewater—a case study at South Kaliapani chromite mine area, Orissa, India. Int J Phytoremediation. 13(5):397–409. doi: 10.1080/15226511003753979.
  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK. 2012. Bio-concentration of chromium—an in-situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ Monit Assess. 184(2):1015–1024. doi: 10.1007/s10661-011-2017-7.
  • Mohanty M, Pradhan C, Patra H. 2015. Chromium translocation, concentration and its phytotoxic impacts in in vivo grown seedlings of Sesbania sesban L. Merrill. Acta Biol Hung. 66(1):80–92. doi: 10.1556/abiol.66.2015.1.7.
  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C. 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments. 16(4):1214–1224. doi: 10.1007/s11368-015-1069-7.
  • Natasha Dumat C, Shahid M, Khalid S, Murtaza B. 2020. Lead pollution and human exposure: forewarned is forearmed and the question now becomes how to respond to the threat! In: Gupta D, Chatterjee S, Walther C, editors. Lead in plants and the environment. Radionuclides and heavy metals in the environment. Cham: Springer. p. 33–65. doi: 10.1007/978-3-030-21638-2_3.
  • Niazi NK, Bishop TF, Singh B. 2011. Evaluation of spatial variability of soil arsenic adjacent to a disused cattle-dip site, using model-based geostatistics. Environ Sci Technol. 45(24):10463–10470. doi: 10.1021/es201726c.
  • Niazi NK, Singh B, Minasny B. 2015. Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. Int J Environ Sci Technol. 12(6):1965–1974. doi: 10.1007/s13762-014-0580-5.
  • Nwaugo VO, Obiekezie SO, Etok CA. 2007. Post operational effects of heavy metal mining on soil quality in Ishiagu, Ebonyi State. Int J Biotechnol Allied Sci. 2(3):242–246.
  • Ojedokun AT, Bello OS. 2016. Sequestering heavy metals from wastewater using cow dung. Water Resour Ind. 13:7–13. doi: 10.1016/j.wri.2016.02.002.
  • Ololade IA, Ashoghon AO, Adeyemi O. 2007. Plants level of chromium and nickel at a refuse site, any positive impact? J Appl Sci. 7(13):1768–1773. doi: 10.3923/jas.2007.1768.1773.
  • Olsen SR, Sommers LE. 1982. Phosphorus. In: Page AL et al., editors. Methods of soil analysis. Part 2, Agronomy Monograph. Vol 9. 2nd ed. Madison: ASA and SSSA. p. 403–430.
  • Pandey VC, Pandey DN, Singh N. 2014. Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Clean Prod. 86:37–39. doi: 10.1016/j.jclepro.2014.08.030.
  • Pandey VC, Singh B. 2012. Rehabilitation of coal fly ash basins: current need to use ecological engineering. Ecol Eng. 49:190–192. doi: 10.1016/j.ecoleng.2012.08.037.
  • Parihar JK, Parihar PK, Pakade YB, Katnoria JK. 2021. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environ Sci Pollut Res Int. 28(2):2426–2442. doi: 10.1007/s11356-020-10454-3.
  • Pathak L, Shah K. 2021. Phytoremediation of abandoned mining areas for land restoration: approaches and technology. In: Bauddh K, Korstad J, Sharma P, editors. Phytorestoration of abandoned mining and oil drilling sites. Jharkhand (Ranchi): Elsevier. p. 33–56. doi: 10.1016/B978-0-12-821200-4.00008-X.
  • Patra DK, Grahacharya A, Pradhan C, Patra HK. 2021. Phytoremediation potential of coffee pod (Cassia tora): an in-situ approach for attenuation of chromium from overburden soil of Sukinda Chromite Mine, India. Environ Prog Sustain Energy. 40(2):13510. doi: 10.1016/j.jtice.2024.105472.
  • Phil-Eze PO. 2010. Variability of soil properties related to vegetation cover in a tropical rainforest landscape. J Geogr Region Plann. 3(7):177–184.
  • Radda IA, Kumar BM, Pathak P. 2021. Land degradation in Bihar, India: an assessment using rain-use efficiency and residual trend analysis. Agric Res. 10(3):434–447. doi: 10.1007/s40003-020-00514-y.
  • Ranieri E, Moustakas K, Barbafieri M, Ranieri AC, Herrera-Melián JA, Petrella A, Tommasi F. 2020. Phytoextraction technologies for mercury- and chromium-contaminated soil: a review. J Chem Technol Biotechnol. 95(2):317–327. doi: 10.1016/j.ecoenv.2024.116181.
  • Rehman W, Zeb A, Noor N, Nawaz M. 2008. Heavy metal pollution assessment in various industries of Pakistan. Environ Geol. 55(2):353–358. doi: 10.1007/s00254-007-0980-7.
  • Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O. 2005. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut. 137(2):316–323. doi: 10.1016/j.envpol.2005.01.012.
  • Rosendahl J, Erlewein A, Hecheltjen A. 2022. UNCCD COP 14: mirroring soil and land’s growing relevance at the interface of climate and biodiversity; discussion focus on drought and land tenure. In: Ginzky H, Dooley E, Heuser IL, Kameri-Mbote P, Kibugi R, Markus T, editor(s). International yearbook of soil law and policy 2020/ 2021. Vol. 2020. Cham (Switzerland): Springer. doi: 10.1007/978-3-030-96347-7_9.
  • Rosenfeld CE, Chaney RL, Martínez CE. 2018. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) FK Mey in field-contaminated soils. Sci Total Environ. 616–617:279–287. doi: 10.1016/j.scitotenv.2017.11.016.
  • Schreefel L, Schulte RP, De Boer IJ, Schrijver AP, Van Zanten HH. 2020. Regenerative agriculture – the soil is the base. Global Food Secur. 26:100404. doi: 10.1016/j.gfs.2020.100404.
  • Shah K, Kumar RG, Verma S, Dubey RS. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161(6):1135–1144. doi: 10.1016/S0168-9452(01)00517-9.
  • Shah K, Pathak L. 2019. Transgenic energy plants for phytoremediation of toxic metals and metalloids. In: Prasad MNV, editor. Transgenic plant technology for remediation of toxic metals and metalloids. London (United Kingdom): Elsevier, Academic Press. p. 319–340.
  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C. 2015. Heavy metal stress and crop productivity. In: Hakeem KR, editor. Crop production and global environmental issues. Cham: Springer. p. 1–25.
  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil–plant system: a review. Chemosphere. 178:513–533. doi: 10.1016/j.chemosphere.2017.03.074.
  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M. 2015. Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health. 12(10):12371–12390. doi: 10.3390/ijerph121012371.
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. 2005. Chromium toxicity in plants. Environ Int. 31(5):739–753. doi: 10.1016/j.envint.2005.02.003.
  • Sharma KR, Raju SV, Roshan DR, Jaiswal DK. 2018. Effect of abiotic factors on yellow stem borer, Scirpophaga incertulas (Walker) and rice leaf folder, Cnaphalocrocis medinalis (Guenee) population. J Exp Zool India. 21(1):233–236.
  • Shayler H, McBride M, Harrison E. 2009. Sources and impacts of contaminants in soils. New York: Cornell Waste Management Institute, Department of Crop & Soil Sciences, Cornell University.
  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. 2013. Chromium toxicity and tolerance in plants. Environ Chem Lett. 11(3):229–254. doi: 10.1007/s10311-013-0407-5.
  • Singh S, Fulzele DP. 2021. Phytoextraction of arsenic using a weed plant Calotropis procera from contaminated water and soil: growth and biochemical response. Int J Phytoremediation. 23(12):1310–1318. doi: 10.1080/15226514.2021.1895717.
  • Srivastava V, Ismail SA, Singh P, Singh RP. 2015. Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol. 14(2):317–337. doi: 10.1007/s11157-014-9352-4.
  • Tang L, Yao A, Yuan M, Tang Y, Liu J, Liu X, Qiu R. 2016. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere.164:190–200. doi: 10.1016/j.chemosphere.2016.08.026.
  • Usman AR, Lee SS, Awad YM, Lim KJ, Yang JE, Ok YS. 2012. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere. 87(8):872–878. doi: 10.1016/j.chemosphere.2012.01.028.
  • Usman K, Al Jabri H, Abu-Dieyeh MH, Alsafran MH. 2020. Comparative assessment of toxic metals bioaccumulation and the mechanisms of chromium (Cr) tolerance and uptake in Calotropis procera. Front Plant Sci. 11:883. doi: 10.3389/fpls.2020.00883.
  • Usman K, Al-Ghouti MA, Abu-Dieyeh MH. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci Rep. 9(1):5658. doi: 10.1038/s41598-019-42029-9.
  • Walkley AJ, Black IA. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C. 2021. A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater. 403:123658. doi: 10.1016/j.jhazmat.2020.123658.
  • Williams P. 2005. Waste treatment and disposal, 2nd ed. Landfill leachate. p. 220. UK: The University of Leeds, John Wiley & Sons, Ltd.
  • Xiong T, Dumat C, Pierart A, Shahid M, Kang Y, Li N, Bertoni G, Laplanche C. 2016. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environ Geochem Health. 38(6):1283–1301. doi: 10.1007/s10653-016-9796-2.
  • Zhang S, Wen J, Hu Y, Fang Y, Zhang H, Xing L, Wang Y, Zeng G. 2019. Humic substances from green waste compost: an effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J Hazard Mater. 366:210–218. doi: 10.1016/j.jhazmat.2018.11.103.
  • Zhang T, Lin W. 2014. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev. 43(16):5982–5993. doi: 10.1039/C4CS00103F.
  • Zhao K, Liu X, Xu J, Selim HM. 2010. Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater. 181(1–3):778–787. doi: 10.1016/j.jhazmat.2010.05.081.
  • Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S, Chang E, Yin W, Jiang Z. 2014. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res Int. 21(7):5076–5085. doi: 10.1007/s11356-013-2393-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.