64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Urban meadow—a recipe for long-lasting anti-smog land cover

, , , , , & show all

References

  • Adhikari S, Struwig M, Siebert SJ. 2022. Identifying common trees and herbaceous plants to mitigate particulate matter pollution in a semi-arid mining region of South Africa. Climate. 11(1):9. doi: 10.3390/cli11010009.
  • Agarwal P, Sarkar M, Chakraborty B, Banerjee T. 2019. Phytomanagement of polluted sites. Chapter 7 – phytoremediation of air pollutants: prospects and challenges. In: Pandey VC, Bauddh K, editors. Phytoremediation of air pollutants: prospects and challenges. Elsevier. p. 221–241. doi: 10.1016/B978-0-12-813912-7.00007-7.
  • Corada K, Woodward H, Alaraj H, Collins CM, de Nazelle A. 2021. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ Pollut. 269:116104. doi: 10.1016/j.envpol.2020.116104.
  • Du Y, Xu X, Chu M, Guo Y, Wang J. 2016. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 8(1):E8–E19. doi: 10.3978/j.issn.2072-1439.2015.11.37.
  • Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W. 2020. Linking pollinators and city flora: how vegetation composition and environmental features shapes pollinators composition in urban environment. Urban For Urban Green. 56:126795. doi: 10.1016/j.ufug.2020.126795.
  • Dzierzanowski K, Popek R, Gawrońska H, Saebø A, Gawroński SW. 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation. 13(10):1037–1046. doi: 10.1080/15226514.2011.552929.
  • Estévez-García JA, Rojas-Roa NY, Rodríguez-Pulido AI. 2013. Occupational exposure to air pollutants: particulate matter and respiratory symptoms affecting traffic-police in Bogotá. Rev Salud Publica. 15:889–902.
  • Francoeur XW, Dagenais D, Paquette A, Dupras J, Messier C. 2021. Complexifying the urban lawn improves heat mitigation and arthropod biodiversity. Urban For Urban Green. 60:127007. doi: 10.1016/j.ufug.2021.127007.
  • Grange SK, Fischer A, Zellweger C, Alastuey A, Querol X, Jaffrezo JL, Hueglin C. 2021. Switzerland’s PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. Atmos Environ. 12:100145. doi: 10.1016/j.aeaoa.2021.100145.
  • Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, Mitschunas N, Memmott J, Morse H, Nikolitsi M, et al. 2016. Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLOS One. 11(6):e0158117. doi: 10.1371/journal.pone.0158117.
  • Irwin SC. 2022. Effect of ecological restoration on plant-pollinator networks in urban meadows. Toronto (Canada): Ecology and Evolutionary Biology.
  • Jaworek A, Sobczyk AT, Marchewicz A, Krupa A, Czech T. 2021. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renew Sust Energ Rev. 137:110446. doi: 10.1016/j.rser.2020.110446.
  • Jiang B, Sun C, Mu S, Zhao Z, Chen Y, Lin Y, Qiu L, Gao T. 2021. Differences in airborne particulate matter concentration in urban green spaces with different spatial structures in Xi’an, China. Forests. 13(1):14. doi: 10.3390/f13010014.
  • Kim K, Ara S, Kabir E, Brown RJC. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 60:71–80. doi: 10.1016/j.envint.2013.07.019.
  • Kozlowski TT, Constantinidou HA. 1986. Environmental pollution and tree growth. Forest Abstr. 47(2):105–132.
  • Kwon KJ, Odsuren U, Kim SY, Yang JC, Park BJ. 2021. Comparison of the particulate matter removal capacity of 11 herbaceous landscape plants. J People Plants Environ. 24(3):267–275. doi: 10.11628/ksppe.2021.24.3.267.
  • Li D, Liu J, Zhang J, Gui H, Du P, Yu T, Wang J, Lu Y, Liu W, Cheng Y. 2017. Identification of long-range transport pathways and potential sources of PM2.5 and PM10 in Beijing from 2014 to 2015. J Environ Sci. 56:214–229. doi: 10.1016/j.jes.2016.06.035.
  • Łukowski A, Popek R, Karolewski P. 2020. Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: deposition and ecophysiology. Environ Sci Pollut Res. 27(10):10296–10307. doi: 10.1007/s11356-020-07672-0.
  • Miao C, Yu S, Hu Y, Bu R, Qi L, He X, Chen W. 2020. How the morphology of urban street canyons affects suspended particulate matter concentration at the pedestrian level: an in-situ investigation. Sustain Cities Soc. 55:102042. doi: 10.1016/j.scs.2020.102042.
  • Mohammadian MA, Watling JR, Hill RS. 2007. The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol. 31(1):93–101. doi: 10.1016/j.actao.2006.10.005.
  • Moniuszko H, Puchalska E, Mikowska K, Wójcik-Gront E, Popek R, Lewandowski M, Przybysz A. 2023. Is there a downside to plant ecological services in the city? Influences of particulate matter on the two-spotted spider mite (Tetranychus urticae) foraging on the small-leaved lime in urban conditions. Sci Total Environ. 905:167567. doi: 10.1016/j.scitotenv.2023.167567.
  • Mukherjee A, Agrawal M. 2017. World air particulate matter: sources, distribution and health effects. Environ Chem Lett. 15(2):283–309. doi: 10.1007/s10311-017-0611-9.
  • Nawrocki A, Popek R, Sikorski P, Wińska-Krysiak M, Zhu CY, Przybysz A. 2023. Air phyto-cleaning by an urban meadow – filling the winter gap. Ecol Indic. 151:110259. doi: 10.1016/j.ecolind.2023.110259.
  • Paudel S, States SL. 2023. Urban green spaces and sustainability: exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For Urban Green. 84(8):127932. doi: 10.1016/j.ufug.2023.127932.
  • Pearson J, Bachireddy C, Shyamprasad S, Goldfine A, Brownstein J. 2010. Association between fine particulate matter and diabetes prevalence in the US. Diabetes Care. 33(10):2196–2201. doi: 10.2337/dc10-0698.
  • Poonam P, Nandar SK, Kathuria S, Ramesh V. 2017. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 83(4):415–423. doi: 10.4103/0378-6323.199579.
  • Popek R, Gawrońska H, Gawroński SW. 2015. The level of particulate matter on foliage depends on the distance from the source of emission. Int J Phytoremediation. 17(12):1262–1268. doi: 10.1080/15226514.2014.989312.
  • Popek R, Gawrońska H, Wrochna M, Gawroński SW, Saebø A. 2013. Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes – a 3-year study. Int J Phytoremediation. 15(3):245–256. doi: 10.1080/15226514.2012.694498.
  • Przybysz A, Nersisyan G, Gawroński SW. 2019. Removal of particulate matter and trace elements from ambient air by urban greenery in the winter season. Environ Sci Poll Res. 26:473–482. doi: 10.1007/s11356-018-3628-0.
  • Przybysz A, Popek R, Stankiewicz-Kosyl M, Zhu CY, Małecka-Przybysz M, Maulidyawati T, Wińska-Krysiak M. 2021. Where trees cannot grow – particulate matter accumulation by urban meadows. Sci Total Environ. 785:147310. doi: 10.1016/j.scitotenv.2021.147310.
  • Przybysz A, Sæbø A, Hanslin HM, Gawroński SW. 2014. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ. 481:360–369. doi: 10.1016/j.scitotenv.2014.02.072.
  • Ramer H, Nelson KC, Spivak M, Watkins E, Wolfin J, Pulscher M. 2019. Exploring Park visitor perceptions of ‘flowering bee lawns’ in neighborhood parks in Minneapolis, MN, US. Lands Urban Plan. 189:117–128. doi: 10.1016/j.landurbplan.2019.04.015.
  • Rentschler J, Leonova N. 2023. Global air pollution exposure and poverty. Nat Commun. 14(1):4432. doi: 10.1038/s41467-023-39797-4.
  • Roguz K, Chiliński M, Roguz A, Zych M. 2023. Pollination of urban meadows – plant reproductive success and urban-related factors influencing frequency of pollinators visits. Urban For Urban Green. 84:127944. doi: 10.1016/j.ufug.2023.127944.
  • Rutkowski L. 2019. Klucz do oznaczania roślin Polski niżowej. Warszawa: Wydawnictwo Naukowe PWN.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49(1):643–668. doi: 10.1146/annurev.arplant.49.1.643.
  • Shao H, Kim G. 2022. A comprehensive review of different types of green infrastructure to mitigate urban heat islands: progress, functions, and benefits. Land. 11(10):1792. doi: 10.3390/land11101792.
  • Sikorski P, Gawryszewska B, Sikorska D, Chormański J, Schwerk A, Jojczyk A, Ciężkowski W, Archiciński P, Łepkowski M, Dymitryszyn I, et al. 2021. The value of doing nothing – how informal green spaces can provide comparable ecosystem services to cultivated urban parks. Ecosyst Serv. 50:101339. doi: 10.1016/j.ecoser.2021.101339.
  • Timmers VR, Achten PA. 2016. Non-exhaust PM emissions from electric vehicles. Atmos Environ. 134:10–17. doi: 10.1016/j.atmosenv.2016.03.017.
  • Tomczak A, Miller AB, Weichenthal SA, To T, Wall C, van Donkelaar A, Martin RV, Crouse DL, Villeneuve PJ. 2016. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int J Cancer. 139(9):1958–1966. doi: 10.1002/ijc.30255.
  • Tomson M, Kumar P, Barwise Y, Perez P, Forehead H, French K, Morawska L, Watts JF. 2021. Green infrastructure for air quality improvement in street canyons. Environ Int. 146:106288. doi: 10.1016/j.envint.2020.106288.
  • Turunen M, Huttunen S. 1990. A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual. 19(1):35–45. doi: 10.2134/jeq1990.00472425001900010003x.
  • Wang L, Tian W, Zheng P. 2023. Review of the numerical simulation of the wind and pollutant diffusion in urban street canyon under the influence of trees. Buildings. 13(4):1088. doi: 10.3390/buildings13041088.
  • Weber F, Kowarik I, Säumel I. 2014. Herbaceous plants as filters: immobilization of particulates along urban street corridors. Environ Pollut. 186:234–240. doi: 10.1016/j.envpol.2013.12.011.
  • Weerakkody U, Dover JW, Mitchell P, Reiling K. 2018. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For Urban Green. 30:98–107. doi: 10.1016/j.ufug.2018.01.001.
  • Weijers EP, Khlystov AY, Kos GPA, Erisman JW. 2004. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. Atmos Environ. 38(19):2993–3002. doi: 10.1016/j.atmosenv.2004.02.045.
  • Xu X, Zhang J, Yang X, Zhang Y, Chen Z. 2020. The role and potential pathogenic mechanism of particulate matter in childhood asthma: a review and perspective. J Immunol Res. 2020:8254909. doi: 10.1155/2020/8254909.
  • Zhao C, Wang Y, Shi X, Zhang D, Wang C, Jiang JH, Zhang Q, Fan H. 2019. Estimating the contribution of local primary emissions to particulate pollution using high‐density station observations. J Geophys Res Atmos. 124(3):1648–1661. doi: 10.1029/2018JD028888.
  • Zhu Y, Huang L, Li J, Ying Q, Zhang H, Liu X, Liao H, Li N, Liu Z, Mao Y, et al. 2018. Sources of particulate matter in China: insights from source apportionment studies published in 1987–2017. Environ Int. 115:343–357. doi: 10.1016/j.envint.2018.03.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.