0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing thallium phycoremediation by applying Anabaena laxa and Nostoc muscorum and exploring its effect on cellular growth, antioxidant, and metabolic profile

, , , , &

References

  • AbdElgawad H, Abuelsoud W, Madany MMY, Selim S, Zinta G, Mousa ASM, Hozzein WN. 2020. Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules. 10(12):1675. doi: 10.3390/biom10121675.
  • Abdel-Mawgoud M, Bouqellah NA, Korany SM, Reyad AM, Hassan AHA, Alsherif EA, AbdElgawad H. 2023. Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity. Plant Physiol Biochem. 203:108077. doi: 10.1016/j.plaphy.2023.108077.
  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. 2019. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol. 39(8):981–998. doi: 10.1080/07388551.2019.1654972.
  • Abinandan S, Venkateswarlu K, Megharaj M. 2021. Phenotypic changes in microalgae at acidic pH mediate their tolerance to higher concentrations of transition metals. Curr Res Microb Sci. 2:100081. doi: 10.1016/j.crmicr.2021.100081.
  • Aebi, H. 1984. [13] Catalase in vitro. In: Methods in Enzymology. Academic Press. p. 121–126.
  • Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R. 2020. Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. In: Bioremediation of industrial waste for environmental safety: Volume II: Biological agents and methods for industrial waste management. Singapore: Springer. p. 53–76.
  • Al Jaouni S, Saleh AM, Wadaan MA, Hozzein WN, Selim S, AbdElgawad H. 2018. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J Plant Physiol. 224–225:121–131. doi: 10.1016/j.jplph.2018.03.016.
  • Alho LdOG, Gebara RC, Paina KdA, Sarmento H, Melão MdGG 2019. Responses of Raphidocelis subcapitata exposed to Cd and Pb: mechanisms of toxicity assessed by multiple endpoints. Ecotoxicol Environ Saf. 169:950–959. doi: 10.1016/j.ecoenv.2018.11.087.
  • Antón MAL, Spears DA, Somoano MD, Tarazona MRM. 2013. Thallium in coal: analysis and environmental implications. Fuel. 105:13–18. doi: 10.1016/j.fuel.2012.08.004.
  • Aoki M, Matsumoto H, Takahashi T, Sato K, Kumata H, Fujiwara K. 2013. 2013//: Thallium induces morphological changes in the photosynthetic apparatus of Synechocystis sp. PCC6803. In: Kuang T, Lu C, Zhang L, editors. Proceedings of the photosynthesis research for food, fuel and the future. Berlin Heidelberg: Springer.
  • Aoki M, Suematsu H, Kumata H, Fujiwara K. 2008. Physiological and photosynthetic toxicity of thallium in Synechocystis sp. PCC6803. Proceedings of the Photosynthesis Energy from the Sun: 14th International Congress on Photosynthesis; Springer.
  • Aoyagi K, Bassham JA. 1983. Pyruvate orthophosphate dikinase in wheat leaves. Plant Physiol. 73(3):853–854. doi: 10.1104/pp.73.3.853.
  • Benzie IF, Strain J. 1999. [2] Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Methods in enzymology. Elsevier. p. 15–27.
  • Bidlack WR, Tappel AL. 1973. Damage to microsomal membrane by lipid peroxidation. Lipids. 8(4):177–182. doi: 10.1007/BF02544631.
  • Borah D, Rout J, Nooruddin T. 2024. Phycoremediation and water reuse in bioenergy production from algae and cyanobacteria in relevance to sustainable development goals. In: Water, the environment and the sustainable development goals. Elsevier. p. 375–406.
  • Brdjanovic D, Hooijmans CM, van Loosdrecht MCM, Alaerts GJ, Heijnen JJ. 1996. The dynamic effects of potassium limitation on biological phosphorus removal. Water Res. 30(10):2323–2328. doi: 10.1016/0043-1354(96)00121-2.
  • Campanella B, D’Ulivo A, Ghezzi L, Onor M, Petrini R, Bramanti E. 2018. Influence of environmental and anthropogenic parameters on thallium oxidation state in natural waters. Chemosphere. 196:1–8. doi: 10.1016/j.chemosphere.2017.12.155.
  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46(5):1394–1407. doi: 10.1016/j.watres.2011.12.016.
  • Casiot C, Egal M, Bruneel O, Verma N, Parmentier M, Elbaz-Poulichet F. 2011. Predominance of aqueous Tl (I) species in the river system downstream from the abandoned Carnoulès mine (Southern France). Environ Sci Technol. 45(6):2056–2064. doi: 10.1021/es102064r.
  • Cavalletti E, Romano G, Palma Esposito F, Barra L, Chiaiese P, Balzano S, Sardo A. 2022. Copper effect on microalgae: toxicity and bioremediation strategies. Toxics. 10(9):527. doi: 10.3390/toxics10090527.
  • Cavet JS, Borrelly GP, Robinson NJ. 2003. Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev. 27(2–3):165–181. doi: 10.1016/S0168-6445(03)00050-0.
  • Chang C-C, Yang M-H, Wen H-M, Chern J-C. 2020. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 10(3):178–182. doi: 10.38212/2224-6614.2748.
  • Cheam V. 2001. Thallium contamination of water in Canada. Water Quality Res J. 36(4):851–877. doi: 10.2166/wqrj.2001.046.
  • Chen Y, Wang C, Liu J, Wang J, Qi J, Wu Y. 2013. Environmental exposure and flux of thallium by industrial activities utilizing thallium-bearing pyrite. Sci China Earth Sci. 56(9):1502–1509. doi: 10.1007/s11430-013-4621-6.
  • Cobelo-García A, Filella M, Croot P, Frazzoli C, Du Laing G, Ospina-Alvarez N, Rauch S, Salaun P, Schäfer J, Zimmermann S. 2015. COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environ Sci Pollut Res Int. 22(19):15188–15194. doi: 10.1007/s11356-015-5221-0.
  • Cui J, Xie Y, Sun T, Chen L, Zhang W. 2021. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. Sci Total Environ. 761:144111. doi: 10.1016/j.scitotenv.2020.144111.
  • Danouche M, El Ghatchouli N, Arroussi HE. 2022. Overview of the management of heavy metals toxicity by microalgae. J Appl Phycol. 34(1):475–488. doi: 10.1007/s10811-021-02668-w.
  • De Filippis L, Ziegler H. 1993. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol. 142(2):167–172. doi: 10.1016/S0176-1617(11)80958-2.
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101. doi: 10.1093/jxb/32.1.93.
  • Dixit S, Singh D. 2014. An evaluation of phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. J Appl Phycol. 26(3):1331–1342. doi: 10.1007/s10811-013-0145-x.
  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas A. 2011. Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol. 10:1125–1132.
  • El Bestawy E. 2019. Efficiency of immobilized cyanobacteria in heavy metals removal from industrial effluents. DWT. 159:66–78. doi: 10.5004/dwt.2019.23808.
  • Ezraty B, Gennaris A, Barras F, Collet J-F. 2017. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 15(7):385–396. doi: 10.1038/nrmicro.2017.26.
  • Galván-Arzate S, Santamaría A. 1998. Thallium toxicity. Toxicol Lett. 99(1):1–13. doi: 10.1016/s0378-4274(98)00126-x.
  • Genestra M. 2007. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 19(9):1807–1819. doi: 10.1016/j.cellsig.2007.04.009.
  • Gomes HI. 2012. Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev. 1(1):59–66. doi: 10.1080/09593330.2012.696715.
  • Singh GP, Kumar M, Daiya A. 2018. Effect of zinc stress on biochemical profiling in Dunaliella Salina teod. And Spirulina Platensis gomo. Life. 50:21.
  • Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 249(22):7130–7139. doi: 10.1016/S0021-9258(19)42083-8.
  • Hällbom L, Bergman B. 1983. Effects of inorganic nitrogen on C 2 H 2 reduction and CO 2 exchange in the Peltigera praetextata-Nostoc and Peltigera aphthosa-Coccomyxa-Nostoc symbioses. Planta. 157(5):441–445. doi: 10.1007/BF00397201.
  • Hanzel CE, Verstraeten SV. 2006. Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol. 216(3):485–492. doi: 10.1016/j.taap.2006.07.003.
  • Hassler CS, Chafin RD, Klinger MB, Twiss MR. 2007. Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton. Environ Toxicol Chem. 26(6):1139–1145. doi: 10.1897/06-315r.1.
  • Havens KE. 2008. Cyanobacteria blooms: effects on aquatic ecosystems. In: Cyanobacterial harmful algal blooms: state of the science and research needs. p. 733–747.
  • He Y, Ma J, Joseph V, Wei Y, Liu M, Zhang Z, Li G, He Q, Li H. 2020. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa. Environ Pollut. 267:115576. doi: 10.1016/j.envpol.2020.115576.
  • Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207(4):604–611. doi: 10.1007/s004250050524.
  • Ingrisano R, Tosato E, Trost P, Gurrieri L, Sparla F. 2023. Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants. 12(19):3410. doi: 10.3390/plants12193410.
  • Jiang Z-Y, Woollard AC, Wolff SP. 1990. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 268(1):69–71. doi: 10.1016/0014-5793(90)80974-n.
  • Kakinuma M, Coury D, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Yoshiura Y, Amano H. 2006. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol. 149(1):97–106. doi: 10.1007/s00227-005-0215-y.
  • Kaneko T, Tabata S. 1997. Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 38(11):1171–1176. doi: 10.1093/oxfordjournals.pcp.a029103.
  • Keith L, Telliard W. 1979. ES&T special report: priority pollutants: IA perspective view. Environ Sci Technol. 13(4):416–423. doi: 10.1021/es60152a601.
  • Kellar PE, Paerl HW. 1980. Physiological adaptations in response to environmental stress during an N2-fixing Anabaena bloom. Appl Environ Microbiol. 40(3):587–595. doi: 10.1128/aem.40.3.587-595.1980.
  • Korotkov SM, Emelyanova LV, Konovalova SA, Brailovskaya IV. 2015. Tl + induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate. Toxicol In Vitro. 29(5):1034–1041. doi: 10.1016/j.tiv.2015.04.006.
  • Kuang T, Lu C, Zhang L, Aoki M, Matsumoto H, Takahashi T, Sato K, Kumata H, Fujiwara K. 2013. Thallium induces morphological changes in the photosynthetic apparatus of Synechocystis sp.PCC6803. Proceedings of the Photosynthesis Research for Food, Fuel and the Future: 15th International Conference on Photosynthesis; Springer.
  • Kumar K, Khan P. 1982. Effect of insecticides, oxydementon-methyl & dimethoate, on chlorophyll retention & hydrogen peroxide utilization in ragi (Eleusine coracana Gaertn. cv PR 202) leaves during senescence. Indian J Exp Biol. 20(12):889–893.
  • Kwan K, Smith S. 1988. The effect of thallium on the growth of Lemna minor and plant tissue concentrations in relation to both exposure and toxicity. Environ Pollut. 52(3):203–219. doi: 10.1016/0269-7491(88)90004-8.
  • Leão PN, Vasconcelos MTS, Vasconcelos VM. 2007. Role of marine cyanobacteria in trace metal bioavailability in seawater. Microb Ecol. 53(1):104–109. doi: 10.1007/s00248-006-9153-6.
  • Levine R. 1994. Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol. 233:246–257.
  • Li W. 1979. Cellular composition and physiological characteristics of the diatom Thalassiosira weissflogii adapted to cadmium stress. Mar Biol. 55(3):171–180. doi: 10.1007/BF00396815.
  • Liang Q, Jing H, Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta. 51(3):507–513. doi: 10.1016/s0039-9140(99)00318-5.
  • Liu J, Ren S, Zhou Y, Tsang DC, Lippold H, Wang J, Yin M, Xiao T, Luo X, Chen Y. 2019. High contamination risks of thallium and associated metal (loid) s in fluvial sediments from a steel-making area and implications for environmental management. J Environ Manage. 250:109513. doi: 10.1016/j.jenvman.2019.109513.
  • Liu J, Wang J, Chen Y, Xie X, Qi J, Lippold H, Luo D, Wang C, Su L, He L, et al. 2016. Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environ Pollut. 212:77–89. doi: 10.1016/j.envpol.2016.01.046.
  • Ma X, Deng D, Chen W. 2017. Inhibitors and Activators of SOD, GSH-Px, and CAT. Enzyme Inhibitors and Activators. 29:207–224.
  • Mackinney G. 1941. Absorption of light by chlorophyll solutions. J Biol Chem. 140(2):315–322. doi: 10.1016/S0021-9258(18)51320-X.
  • Mallick N, Rai L. 1999. Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. J Plant Physiol. 155(1):146–149. doi: 10.1016/S0176-1617(99)80158-8.
  • Mazur R, Sadowska M, Kowalewska Ł, Abratowska A, Kalaji HM, Mostowska A, Garstka M, Krasnodębska-Ostręga B. 2016. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biol. 16(1):191. doi: 10.1186/s12870-016-0883-4.
  • Mona S, Kumar V, Deepak B, Kaushik A. 2020. Cyanobacteria: the eco-friendly tool for the treatment of industrial wastewaters. In: Bioremediation of industrial waste for environmental safety: volume II: biological agents and methods for industrial waste management. Singapore: Springer. p. 389–413.
  • Morales-Zarco MA, Osorio-Rico L, Aschner M, Galván-Arzate S, Santamaría A. 2023. Thallium neurotoxicity. In: Handbook of neurotoxicity. Springer. p. 2331–2357.
  • Murshed R, Lopez-Lauri F, Sallanon H. 2008. Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal Biochem. 383(2):320–322. doi: 10.1016/j.ab.2008.07.020.
  • Murugesan A, Maheswari S, Bagirath G. 2008. Biosorption of cadmium by live and immobilized cells of Spirulina platensis. Int J Environ Res. 2(3):307–312.
  • Nguyen HN, Kisiala AB, Emery RN. 2020. The roles of phytohormones in metal stress regulation in microalgae. J Appl Phycol. 32(6):3817–3829. doi: 10.1007/s10811-020-02271-5.
  • Nielsen SG, Rehkämper M, Porcelli D, Andersson P, Halliday AN, Swarzenski PW, Latkoczy C, Günther D. 2005. Thallium isotope composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim Cosmochim Acta. 69(8):2007–2019. doi: 10.1016/j.gca.2004.10.025.
  • Norris P, Man WK, Hughes MN, Kelly DP. 1976. Toxicity and accumulation of thallium in bacteria and yeast. Arch Microbiol. 110(23):279–286. doi: 10.1007/BF00690239.
  • Osmolovskaya N, Dung VV, Kuchaeva L. 2018. The role of organic acids in heavy metal tolerance in plants. Biol Commun. 63:9–16.
  • Paerl HW, Otten TG, Joyner AR. 2016. Moving towards adaptive management of cyanotoxin‐impaired water bodies. Microb Biotechnol. 9(5):641–651. doi: 10.1111/1751-7915.12383.
  • Perotti M, Petrini R, D’Orazio M, Ghezzi L, Giannecchini R, Vezzoni S. 2018. Thallium and other potentially toxic elements in the baccatoio stream catchment (Northern Tuscany, Italy) receiving drainages from abandoned mines. Mine Water Environ. 37(3):431–441. doi: 10.1007/s10230-017-0485-x.
  • Peter AJ, Viraraghavan T. 2005. Thallium: a review of public health and environmental concerns. Environ Int. 31(4):493–501. doi: 10.1016/j.envint.2004.09.003.
  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H. 2004. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol. 134(4):1479–1487. doi: 10.1104/pp.103.033548.
  • Pourahmad J, Eskandari MR, Daraei B. 2010. A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol. 25(5):456–467. doi: 10.1002/tox.20590.
  • Prajapati SK, Kaushik P, Malik A, Vijay VK. 2013. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv. 31(8):1408–1425. doi: 10.1016/j.biotechadv.2013.06.005.
  • Prajapati R, Yadav S, Atri N. 2018. Nickel and arsenite‐induced differential oxidative stress and antioxidant responses in two Anabaena species. J Basic Microbiol. 58(12):1061–1070. doi: 10.1002/jobm.201800134.
  • Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. 2021. Metal-Fungus interaction: review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 274:129976. doi: 10.1016/j.chemosphere.2021.129976.
  • Raghavan PS, Potnis AA, Bhattacharyya K, Salaskar DA, Rajaram H. 2020. Axenic cyanobacterial (Nostoc muscorum) biofilm as a platform for Cd (II) sequestration from aqueous solutions. Algal Res. 46:101778. doi: 10.1016/j.algal.2019.101778.
  • Ralph L, Twiss M. 2002. Comparative toxicity of thallium (I), thallium (III), and cadmium (II) to the unicellular alga Chlorella isolated from Lake Erie. Bull Environ Contam Toxicol. 68(2):261–268. doi: 10.1007/s001280247.
  • Rehkämper M, Nielsen SG. 2004. The mass balance of dissolved thallium in the oceans. Mar Chem. 85(3–4):125–139. doi: 10.1016/j.marchem.2003.09.006.
  • Rezayian M, Niknam V, Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae. Toxicol Rep. 6:1309–1313. doi: 10.1016/j.toxrep.2019.10.001.
  • Ritchie RJ, Larkum A. 1998. Uptake of thallium, a toxic heavy-metal, in the cyanobacterium Synechococcus R-2 (Anacystis nidulans, S. Leopoliensis) PCC 7942. Plant and Cell Physiol. 39(11):1156–1168. doi: 10.1093/oxfordjournals.pcp.a029316.
  • Sarath G, Hou G, Baird LM, Mitchell RB. 2007. Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C 4-grasses. Planta. 226(3):697–708. doi: 10.1007/s00425-007-0517-z.
  • Schagerl M, Müller B. 2006. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol. 163(7):709–716. doi: 10.1016/j.jplph.2005.09.015.
  • Singh S. 2020. Biosorption of heavy metals by cyanobacteria: potential of live and dead cells in bioremediation. In: Microbial bioremediation & biodegradation. Singapore: Springer. p. 409–423.
  • Singh Z, Karthigesu IP, Singh P, Rupinder K. 2014. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iranian J Public Health. 43:7–16.
  • Sinha AK, Giblen T, AbdElgawad H, De Rop M, Asard H, Blust R, De Boeck G. 2013. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat Toxicol. 130–131:86–96. doi: 10.1016/j.aquatox.2013.01.003.
  • Stahl BU, Beer DG, Weber LW, Rozman K. 1993. Reduction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) activity by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is due to decreased mRNA levels. Toxicology. 79(1):81–95. doi: 10.1016/0300-483x(93)90207-9.
  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 35(2):171–205. doi: 10.1128/MMBR.35.2.171-205.1971.
  • Stark G. 2005. Functional consequences of oxidative membrane damage. J Membr Biol. 205(1):1–16. doi: 10.1007/s00232-005-0753-8.
  • Sulpice R, Tschoep H, Von Korff M, Büssis D, Usadel B, Höhne M, Witucka‐wall H, Altmann T, Stitt M, Gibon Y. 2007. Description and applications of a rapid and sensitive non‐radioactive microplate‐based assay for maximum and initial activity of D‐ribulose‐1, 5‐bisphosphate carboxylase/oxygenase. Plant Cell Environ. 30(9):1163–1175. doi: 10.1111/j.1365-3040.2007.01679.x.
  • Synytsya A, Sushytskyi L, Saloň I, Babayeva T, Čopíková J. 2023. Intracellular and extracellular carbohydrates in microalgae. In: Handbook of food and feed from microalgae. Elsevier. p. 87–102.
  • Tsai K-P. 2024. Toxic effects of thallium (Tl+) on prokaryotic alga Microcystis aeruginosa: short and long-term influences by potassium and humic acid. Chemosphere. 346:140618. doi: 10.1016/j.chemosphere.2023.140618.
  • Turner A, Furniss O. 2012. An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar Pollut Bull. 64(12):2720–2724. doi: 10.1016/j.marpolbul.2012.09.023.
  • Twiss MR, Twining BS, Fisher NS. 2004. Bioconcentration of inorganic and organic thallium by freshwater phytoplankton. Environ Toxicol Chem. 23(4):968–973. doi: 10.1897/02-643.
  • White C, Sayer J, Gadd G. 1997. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev. 20(3–4):503–516. doi: 10.1111/j.1574-6976.1997.tb00333.x.
  • Xiao T, Guha J, Boyle D, Liu C-Q, Chen J. 2004. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci Total Environ. 318(1-3):223–244. doi: 10.1016/S0048-9697(03)00448-0.
  • Xiao E, Ning Z, Sun W, Jiang S, Fan W, Ma L, Xiao T. 2021. Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. Environ Pollut. 268(Pt A):115834. doi: 10.1016/j.envpol.2020.115834.
  • Zhang Q, Rickaby RE. 2020. Interactions of thallium with marine phytoplankton. Geochim Cosmochim Acta. 276:1–13. doi: 10.1016/j.gca.2020.02.024.
  • Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol. 18(3–5):445–450. doi: 10.1007/s10811-006-9048-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.