18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Natural solution for the remediation of multi-metal contamination: application of natural amino acids, Pseudomonas fluorescens and Micrococcus yunnanensis to increase the phytoremediation efficiency

, , , , &

References

  • Amari T, Ghnaya T, Sghaier S, Porrini M, Lucchini G, Attilio G, Abdelly C. 2016. Evaluation of the Ni2+ phytoextraction potential in Mesembryanthemum crystallinum (halophyte) and Brassica juncea. Bioremediation J. Biodegrad. 7(2):336. doi: 10.4172/2155-6199.1000336.
  • Amjad M, Iqbal MM, Abbas G, Farooq ABU, Naeem MA, Imran M, Murtaza B, Nadeem M, Jacobsen SE. 2021. Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environ Geochem Health. 44(5):1487–1500. doi: 10.1007/s10653-021-00826-0.
  • Appanna VD, Hamel R. 1996. Aluminum detoxification mechanism in Pseudomonas fluorescens is dependent on iron. FEMS Microbiol Lett. 143(2–3):223–228. doi: 10.1111/j.1574-6968.1996.tb08484.x.
  • Asilian E, Ghasemi-Fasaei R, Ronaghi A, Sepehri M, Niazi A. 2019. Chemical-and microbial-enhanced phytoremediation of cadmium-contaminated calcareous soil by maize. Toxicol Ind Health. 35(5):378–386. doi: 10.1177/0748233719842752.
  • Barathi S, Vasudevan N. 2003. Bioremediation of crude oil contaminated soil by bioaugmentation of Pseudomonas fluorescens NS1. J Environ Sci Health A Tox Hazard Subst Environ Eng. 38(9):1857–1866. doi: 10.1081/ESE-120022884.
  • Becerra-Castro C, Kidd P, Kuffner M, Prieto-Fernández Á, Hann S, Monterroso C, Sessitsch A, Wenzel W, Puschenreiter M. 2013. Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl Environ Microbiol. 79(17):5094–5103. doi: 10.1128/AEM.00402-13.
  • Benizri E, Kidd PS. 2018. The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In: Agromining: farming for metals: extracting Unconventional resources using plants. p. 157–188. doi: 10.1007/978-3-319-61899-9_9.
  • Berthon G. 1995. Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (Technical Report). Pure Appl Chem. 67(7):1117–1240. doi: 10.1351/pac199567071117.
  • Das KR, Imon AHMR. 2016. A brief review of tests for normality. Am. J. Theor. Appl. Stat. 5(1):5–12.
  • Dolev N, Katz Z, Ludmer Z, Ullmann A, Brauner N, Goikhman R. 2020. Natural amino acids as potential chelators for soil remediation. Environ Res. 183:109140. doi: 10.11648/j.ajtas.20160501.12.
  • Fauchère JL, Charton M, Kier LB, Verloop A, Pliska V. 1988. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res. 32(4):269–278. doi: 10.1111/j.1399-3011.1988.tb01261.x.
  • Fischer K, Rainer C, Bieniek D, Kettrup A. 1992. Desorption of heavy metals from typical soil components (clay, peat) with glycine. Int J Environ Anal Chem. 46(1–3):53–62. doi: 10.1080/03067319208026996.
  • Fleck M, Petrosyan AM. 2014. Salts of amino acids. Crystallization, structure and properties. Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-06298-3
  • Food and Agriculture Organization of the United Nations – FAO. 2013. Innovative uses of fisheries by-products. Rome: FAO. GLOBEFISH.
  • Food and Agriculture Organization of the United Nations – FAO. 2014. El estado mundial de la pesca y la acuicultura: oportunidadesy desafíos. Roma: FAO.
  • Fu F, Wang Q. 2011. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 92(3):407–418. doi: 10.1016/j.jenvman.2010.11.011.
  • Ghavami N, Alikhani HA, Pourbabaee AA, Besharati H. 2016. Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Commun Soil Sci Plant Anal. 47(12):1517–1527. doi: 10.1080/00103624.2016.1194991.
  • Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 28(3):367–374. doi: 10.1016/j.biotechadv.2010.02.001.
  • Grennan AK. 2009. Identification of genes involved in metal transport in plants. Plant Physiol. 149(4):1623–1624. doi: 10.1104/pp.109.900287.
  • Guarino F, Ruiz KB, Castiglione S, Cicatelli A, Biondi S. 2020. The combined effect of Cr (III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Ecotoxicol Environ Saf. 193:110345. doi: 10.1016/j.ecoenv.2020.110345.
  • Guo G, Zhang D, Lei M, Wan X, Yang J, Wei H, Chen S. 2023. Phytoextraction of As by Pteris vittata L. assisted with municipal sewage sludge compost and associated mechanism. Sci Total Environ. 893:164705. doi: 10.1016/j.scitotenv.2023.164705.
  • Haseeb M, Iqbal S, Hafeez MB, Saddiq MS, Zahra N, Raza A, Lbrahim MU, Iqbal J, Kamran M, Ali Q, et al. 2022. Phytoremediation of nickel by quinoa: morphological and physiological response. PLOS One. 17(1):e0262309. doi: 10.1371/journal.pone.0262309.
  • Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. 2018. Quinoa abiotic stress responses: a review. Plants. 7(4):106. doi: 10.3390/plants7040106.
  • Holzwarth J, Knoche W, Robinson BH. 1978. ‘Catalysis’ of metal complex formation on micelle surfaces. The reaction between divalent metal ions and PADA in the presence of sodium dodecyl sulphate. Ber Bunsenges Phys Chem. 82(9):1001–1005. doi: 10.1002/bbpc.19780820963.
  • Iftikhar A, Abbas G, Saqib M, Shabbir A, Amjad M, Shahid M, Ahmad I, Iqbal S, Qaisrani SA. 2022. Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. Environ Geochem Health. 44(1):257–272. doi: 10.1007/s10653-021-00937-8.
  • Jarrah M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Mayel S. 2019. Enhanced Ni phytoextraction by effectiveness of chemical and biological amendments in sunflower plant grown in Ni-polluted soils. Chem Ecol. 35(8):732–745. doi: 10.1080/02757540.2019.1644325.
  • Jiang L, Yi X, Xu B, Lai K. 2020. Effect of wheat straw derived biochar on immobilization of Cd and Pb in single-and binary-metal contaminated soil. Hum Ecol Risk Assess: an Int J. 26(9):2420–2433. doi: 10.1080/10807039.2020.1771540.
  • Kabeer R, V P S, C S PK, A P T, V S, E K R, K R B. 2022. Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation. 24(11):1120–1132. doi: 10.1080/15226514.2021.2007215.
  • Karczewska A, Milko K. 2010. Effects of chelating agents on copper, lead and zinc solubility in polluted soils and tailings produced by copper industry. Ecol. Chem. Eng. S. A. 17(4–5):395–403.
  • Khosravi A, Zarei M, Ronaghi A. 2018. Effect of PGPR, phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. J Plant Nutr. 41(1):80–89. doi: 10.1080/01904167.2017.1381727.
  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD. 2016a. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotechnol. 6(1):60. doi: 10.1007/s13205-016-0393-y.
  • Kumar A, Singh M, Singh PP, Singh S K, Singh PK, Pandey KD., Vandana, (2016b). Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol, 8, 1–7. doi: 10.1016/j.bcab.2016.07.002.
  • Kumar A, Vandana RS, Yadav A, Giri DD, Singh PK, Pandey KD. 2015a. Rhizosphere and their role in plant–microbe interaction. In: Chaudhary KK, Dhar DW, editors. Microbes in soil and their agricultural prospects. New York (NY): Nova Science Publisher, Inc. p. 83–97.
  • Kumar V, Kumar A, Pandey KD, Roy BK. 2015b. Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol. 65(3):1391–1399. doi: 10.1007/s13213-014-0977-x.
  • Lin LD, Ho JR, Yang BY, Ko CH, Chang FC. 2022. Life cycle assessment of heavy metal contaminated sites: phytoremediation and soil excavation. Int J Phytoremediation. 24(4):334–341. doi: 10.1080/15226514.2021.1937933.
  • Lindsay WL, Norvell W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. oil. Soil Science Soc of Amer J. 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu Y, Kong S, Li Y, Zeng H. 2009. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer. J Hazard Mater. 171(1–3):1159–1167. doi: 10.1016/j.jhazmat.2009.06.123.
  • Mahmood-Ul-Hassan M, Yousra M, Saman L, Ahmad R. 2020. Floriculture: alternate non-edible plants for phytoremediation of heavy metal contaminated soils. Int J Phytoremediation. 22(7):725–732. doi: 10.1080/15226514.2019.1707772.
  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage. 254:109779. doi: 10.1016/j.jenvman.2019.109779.
  • Matiacevich SB, Castellión ML, Maldonado SB, Buera MP. 2006. Water-dependent thermal transitions in quinoa embryos. Thermochim. Acta. 448(2):117–122. doi: 10.1016/j.tca.2006.06.016.
  • Metanat K, Ghasemi-Fasaei R, Ronaghi A, Yasrebi J. 2019. Lead phytostabilization and cationic micronutrient uptake by maize as influenced by Pb levels and application of low molecular weight organic acids. Commun Soil Sci Plant Anal. 50(15):1887–1896. doi: 10.1080/00103624.2019.1648493.
  • Mishra J, Singh R, Arora NK. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol. 8:1706. doi: 10.3389/fmicb.2017.01706.
  • Muhammad H, Basra SM, Irfan A, Abdul W. 2018. Quinoa response to lead: growth and lead partitioning. Int J Agric Biol. 20(2):338–344. ISSN1560-8530, URL: http://www.fspublishers.org/published. Record Number: 20193099661
  • Mujica A, Jacobsen SE, Izquierdo J, Marathee JP. 2001. Resultados de la Prueba Americana y Europea de la Quinua, UNAPuno, CIP:FAO. p. 51.
  • Najjari F, Ghasemi S. 2018. Changes in chemical properties of sawdust and blood powder mixture during vermicomposting and the effects on the growth and chemical composition of cucumber. Sci Hortic. 232:250–255. doi: 10.1016/j.scienta.2018.01.018.
  • Oaikhena EE, Makaije DB, Denwe SD, Namadi MM, Haroun AA. 2016. Bioremediation potentials of heavy metal tolerant bacteria isolated from petroleum refinery effluent. Am. J. Environ. Prot. 5(2):29–34. doi: 10.11648/j.ajep.20160502.12.
  • Okhrimenko DV, Nissenbaum J, Andersson MP, Olsson MHM, Stipp SLS. 2013. Energies of the adsorption of functional groups to calcium carbonate polymorphs: the importance of − OH and − COOH groups. Langmuir. 29(35):11062–11073. doi: 10.1021/la402305x.
  • Ozyurt CE, Boga EK, Ozkutuk AS, Ucar Y, Durmus M, Ozyurt G. 2020. Bioconversion of discard fish (Equulites klunzingeri and Carassius gibelio) fermented with natural lactic acid bacteria; the chemical and microbiological quality of ensilage. Waste Biomass Valor. 11(4):1435–1442. doi: 10.1007/s12649-018-0493-5.
  • Prasad MNV, Freitas H. 2003. Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol. 6(3):285–321. doi: 10.2225/vol6-issue3-fulltext-6.
  • Rahsepar FR, Moghimi N, Leung KT. 2016. Surface-mediated hydrogen bonding of proteinogenic α-amino acids on silicon. Acc Chem Res. 49(5):942–951. doi: 10.1021/acs.accounts.5b00534.
  • Ravanbakhsh MH. 2016. [Bioremediation of heavy metals by bacteria and fungi isolated from lead and zinc polluted locations]. [Ph.D. dissertation]. Shiraz University, Iran: Department of Soil Sciemce.
  • Schmidt W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141(1):1–26. doi: 10.1046/j.1469-8137.1999.00331.x.
  • Sharma JK, Kumar N, Singh NP, Santal AR. 2023. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front Plant Sci. 14:1076876. doi: 10.3389/fpls.2023.1076876.
  • Shi A, Hu Y, Zhang X, Zhou D, Xu J, Rensing C, Zhang L, Xing S, Ni W, Yang W. 2023. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environ Pollut. 327:121559. doi: 10.1016/j.envpol.2023.121559.
  • Silveira MLA, Alleoni LRF, Guilherme LRG. 2003. Biosolids and heavy metals in soils. Sci. agric. . 60(4):793–806. doi: 10.1590/S0103-90162003000400029.
  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, … Sumner ME. 1996. Methods of soil analysis, part 3 chemical methods. p. 1085–1121. Madison, WI: Soil Science Society of America.
  • Thomas EC, Lavkulich LM. 2015. Community considerations for quinoa production in the urban environment. Can J Plant Sci. 95(2):397–404. doi: 10.4141/cjps-2014-228.
  • Verma S, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER. 2021. Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technol. Environ. Policy. 25(38):1–23. doi: 10.1007/s10098-021-02029-8.
  • Wang K, Liu Y, Song Z, Wang D, Qiu W. 2019. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere. 237:124480. doi: 10.1016/j.chemosphere.2019.124480.
  • Wu G. 2013. Discovery and chemistry of amino acids. Amino Acids: biochemistry and Nutrition. CRC Press, Boca Raton, USA. doi: 10.1016/j.psep.2022.12.089.
  • Wu Y, Ma L, Liu Q, Sikder MM, Vestergård M, Zhou K, Wang Q, Yang X, Feng Y. 2020. Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci Total Environ. 726:138554. doi: 10.1016/j.scitotenv.2020.138554.
  • Yamauchi O, Odani A, Takani M. 2002. Metal–amino acid chemistry. Weak interactions and related functions of side chain groups. J. Chem. Soc. Dalton Trans. (18):3411–3421. doi: 10.1039/B202385G.
  • Ye SJ, Clark AA, Armentrout PB. 2008. Experimental and theoretical investigation of alkali metal cation interactions with hydroxyl side-chain amino acids. J Phys Chem B. 112(33):10291–10302. doi: 10.1021/jp800861j.
  • Yeasmin S, Singh B, Kookana RS, Farrell M, Sparks DL, Johnston CT. 2014. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption–desorption and ATR-FTIR study. J Colloid Interface Sci. 432:246–257. doi: 10.1016/j.jcis.2014.06.036.
  • Yingang LU, Jun MA, Ying TENG, Junyu HE, Christie P, Lingjia ZHU, Wenjie RE, Zhang M, Shiping DENG. 2018. Effect of silicon on growth, physiology, and cadmium translocation of tobacco (Nicotiana tabacum L.) in cadmium-contaminated soil. Pedosphere. 28(4):680–689. doi: 10.1016/S1002-0160(17)60417-X.
  • Zhang G, Guo X, Zhao Z, He Q, Wang S, Zhu Y, Yan Y, Liu X, Sun K, Zhao Y, et al. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut. 218:513–522. doi: 10.1016/j.envpol.2016.07.0.
  • Zhu C, Lu Q, Zhou X, Li J, Yue J, Wang Z, Pan S. 2020a. Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. LWT. 130:109445. doi: 10.1016/j.lwt.2020.109445.
  • Zhu C, Zhou X, Long C, Du Y, Li J, Yue J, Pan S. 2020b. Variations of flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of citrus fruits. Chem Biodivers. 17(6):e1900690. doi: 10.1002/cbdv.201900690.
  • Zhu W, Zhu D, He J, Lian X, Chang Z, Guo R, Li X, Wang Y. 2022. Phytoremediation of soil co-contaminated with heavy metals (HMs) and tetracyclines: effect of the co-contamination and HM bioavailability analysis. J Soils Sediments. 22(7):2036–2047. doi: 10.1007/s11368-022-03206-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.