16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lead stabilization and remediation strategy with soil amendment in situ immobilization in contaminated range lands

ORCID Icon

References

  • Abdul HK, Mansoor K, Mustafa S. 2024. Metal organic framework composite (Ti3AlC2 @ZIF-67) for vortex assisted solid phase extraction of lead from water and food samples. J Food Compos Anal. 125:105810. doi: 10.1016/j.jfca.2023.105810.
  • Ahmad I, Akhtar MJ, Zahir ZA, Mitter B. 2015. Organic amendments: effects on cereals growth and lead remediation. Int J Environ Sci Technol. 12(9):2919–2928. doi: 10.1007/s13762-014-0695-8.
  • Ali SB, Jaouali I, Souissi-Najar S, Ouederni A. 2016. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod. 142:3809–3821. doi: 10.1016/j.jclepro.2016.10.081.
  • Anirudhan TS, Suchithra PS. 2010. Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: kinetics and equilibrium modeling. Chem Eng J. 156(1):146–156. doi: 10.1016/j.cej.2009.10.011.
  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng JW, Zhang XH, Zheng JF, et al. 2013. Nano-carbon soil amendment as a solution to prevent Pb-tainted rice from China: results from a cross-site field experiment. Ecol Eng. 58:378–383. doi: 10.1016/j.ecoleng.2013.07.031.
  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, et al. 2014. A three-year experiment confirms continuous immobilization of lead and lead in contaminated paddy field with nano-carbon amendment. J Hazard Mater. 272:121–128. doi: 10.1016/j.jhazmat.2014.03.017.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. 2014. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J Hazard Mater. 266:141–166. doi: 10.1016/j.jhazmat.2013.12.018.
  • Castaldi P, Santona L, Enzo S, Melis P. 2008. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Pb2+ and Zn2+ cations. J Hazard Mater. 156(1–3):428–434. doi: 10.1016/j.jhazmat.2007.12.040.
  • Chang MY, Juang RS. 2004. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci. 278(1):18–25. doi: 10.1016/j.jcis.2004.05.029.
  • Chen T, Zhou Z, Han R, Meng R, Wang H, Lu W. 2015. Adsorption of lead by nano-carbon derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere. 134:286–293. doi: 10.1016/j.chemosphere.2015.04.052.
  • Clemente R, Almela C, Bernal MP. 2006. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut. 143(3):397–406. doi: 10.1016/j.envpol.2005.12.011.
  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A. 2011. Nano-carbon amendment greatly reduces rice Pb uptake in a contaminated paddy soil: a two-year field experiment. BioRes. 6(3):2605–2618. doi: 10.15376/biores.6.3.2605-2618.
  • da Silva LCC, dos Santos LBO, Abate G, Cosentino IC, Fantini MCA, Masini JC, Matos JR. 2008. Adsorption of Pb2+, Cu2+, and Pb2+, in FDU-1 silica and FDU-1 silica modified with humic acid. Micropor Mesopor Mater. 110(2–3):250–259. doi: 10.1016/j.micromeso.2007.06.008.
  • Gao Z, Fu W, Zhang M, Zhao K, Tunney H, Guan Y. 2016. Potentially hazardous metals contamination in soil–rice system and its spatial variation in Shengzhou city, China. J Geochem Explor. 167:62–69. doi: 10.1016/j.gexplo.2016.05.006.
  • Gilmour CC, Riedel GS, Riedel G, Kwon S, Landis R, Brown SS, Menzie CA, Ghosh U. 2013. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Environ Sci Technol. 47(22):13001–13010. doi: 10.1021/es4021074.
  • Habila MA, AlMasoud N, Alomar TS, AlOthman ZA, Yilmaz E, Soylak M. 2020. Deep eutectic solvent-based microextraction of lead(II) traces from water and aqueous extracts before FAAS measurements. Molecules. 25(20):4794. doi: 10.3390/molecules25204794.
  • Han X, Wu H, Li Q, Cai W, Hu S. 2024. Assessment of heavy metal accumulation and potential risks in surface sediment of estuary area: a case study of Dagu river. Mar Environ Res. 196:106416. doi: 10.1016/j.marenvres.2024.106416.
  • He H, Tam NFY, Yao A, Qiu R, Li WC, Ye Z. 2017. Growth and Pb uptake by rice (Oryza sativa) in acidic and Pb-contaminated paddy soils amended with steel slag. Chemosphere. 189:247–254. doi: 10.1016/j.chemosphere.2017.09.069.
  • He M-Y, Dong J-B, Jin Z, Liu C-Y, Xiao J, Zhang F, Sun H, Zhao Z-Q, Gou L-F, Liu W-G, et al. 2021. Pedogenic processes in loess-paleosol sediments: clues from Li isotopes of leachate in Luochuan loess. Geochim Cosmochim Acta. 299:151–162. doi: 10.1016/j.gca.2021.02.021.
  • Horká M, Růzicka F, Holá V, Slais K. 2006. Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem. 385(5):840–846. doi: 10.1007/s00216-006-0508-0.
  • Hu Q, Zhao Y, Hu X, Qi J, Suo L, Pan Y, Song B, Chen X. 2022. Effect of saline land reclamation by constructing the “Raised Field-Shallow Trench” pattern on agroecosystems in Yellow River Delta. Agric Water Manage. 261:107345. doi: 10.1016/j.agwat.2021.107345.
  • Huang D, Imran. 2023. Nano-black carbon improve phosphorus uptake, and sustain soil and plant health under biodynamic agriculture. Commun Soil Sci Plant Anal. 55(4):457–472. doi: 10.1080/00103624.2023.2269244.
  • Jia Q, Sun J, Gan Q, Shi N, Fu S. 2024. Zea mays cultivation, biochar, and arbuscular mycorrhizal fungal inoculation influenced lead immobilization. Microbiol Spectr. 12(4):e0342723. doi: 10.1128/spectrum.03427-23.
  • Jiang C, Wang Y, Yang Z, Zhao Y. 2023. Do adaptive policy adjustments deliver ecosystem–agriculture–economy co-benefits in land degradation neutrality efforts? Evidence from southeast coast of China. Environ Monit Assess. 195(10):1215. doi: 10.1007/s10661-023-11821-6.
  • Khan S, Chao C, Waqas M, Arp HP, Zhu YG. 2013. Sewage sludge nano-carbon influence upon rice (Oryza sativa) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol. 47(15):8624–8632. doi: 10.1021/es400554x.
  • Koptsik GN. 2014. Modern approaches to remediation of heavy metal polluted soils: a review. Eurasian Soil Sci. 47(7):707–722. doi: 10.1134/S1064229314070072.
  • Lan T, Hu Y, Cheng L, Chen L, Guan X, Yang Y, Guo Y, Pan J. 2022. Floods and diarrheal morbidity: evidence on the relationship, effect modifiers, and attributable risk from Sichuan Province, China. J Glob Health. 12:11007. doi: 10.7189/jogh.12.11007.
  • Li H, Zhang T, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Li G, Rinklebe J. 2022. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: multivariate and multiscale investigations. Bioresour Technol. 351:126976. doi: 10.1016/j.biortech.2022.126976.
  • Li Q, Imran. 2024. Mitigation strategies for heavy metal toxicity and its negative effects on soil and plants. Int J Phytoremediation. 2024:1–14. doi: 10.1080/15226514.2024.2327611.
  • Li S, Wang M, Zhao Z, Li X, Han Y, Chen S. 2018. Alleviation of lead phytotoxicity to wheat is associated with Pb redistribution in soil aggregates as affected by amendments. RSC Adv. 8(31):17426–17434. doi: 10.1039/c8ra03066a.
  • Li X, Liu S, Na Z, Lu D, Liu Z. 2013. Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng. 60:160–166. doi: 10.1016/j.ecoleng.2013.07.039.
  • Li Z, Gan B, Li Z, Zhang H, Wang D, Zhang Y, Wang Y. 2023. Kinetic mechanisms of methane hydrate replacement and carbon dioxide hydrate reorganization. Chem Eng J. 477:146973. doi: 10.1016/j.cej.2023.146973.
  • Li Z, Ma Z, Van TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 468–469:843–853. doi: 10.1016/j.scitotenv.2013.08.090.
  • Liang X, Han J, Xu Y, Sun Y, Wang L, Tan X. 2014. In situ field-scale remediation of Pb polluted paddy soil using sepiolite and palygorskite. Geoderma. 235–236:9–18. doi: 10.1016/j.geoderma.2014.06.029.
  • Liu J, He T, Yang Z, Peng S, Zhu Y, Li H, Lu D, Li Q, Feng Y, Chen K, et al. 2024. Insight into the mechanism of nano-TiO2-doped biochar in mitigating cadmium mobility in soil-pak choi system. Sci Total Environ. 916:169996. doi: 10.1016/j.scitotenv.2024.169996.
  • Ma J, Qiu Y, Zhao J, Ouyang X, Zhao Y, Weng L, Md Yasir A, Chen Y, Li Y. 2022. Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: particle size selectivity and role of dissolved organic matter. Environ Sci Technol. 56(6):3524–3534. doi: 10.1021/acs.est.1c07574.
  • Mahabadi AA, Hajabbasi MA, Khademi H, Kazemian H. 2007. Soil lead stabilization using an Iranian natural zeolite. Geoderma. 137(3–4):388–393. doi: 10.1016/j.geoderma.2006.08.032.
  • Meitei MD, Prasad MNV. 2013. Lead (II) and lead (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng. 1(3):200–207. doi: 10.1016/j.jece.2013.04.016.
  • Nabulo G, Young SD, Black CR. 2010. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci Total Environ. 408(22):5338–5351. doi: 10.1016/j.scitotenv.2010.06.034.
  • Najafi S, Jalali M. 2015. Effects of organic acids on lead and copper sorption and desorption by two calcareous soils. Environ Monit Assess. 187(9):585. doi: 10.1007/s10661-015-4804-z.
  • Porter SK, Scheckel KG, Impellitteri CA, Ryan JA. 2004. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Pb, As, and Hg. Crit Rev Environ Sci Technol. 34(6):495–604. doi: 10.1080/10643380490492412.
  • Priya SV, Arulmozhi M. 2012. Biosorbents for toxic heavy metals—a review. Proceedings of the International Conference on Advances in Engineering, Science and Management, Nagapattinam, India. p. 221–230.
  • Qiu S, Yang H, Zhang S, Huang S, Zhao S, Xu X, He P, Zhou W, Zhao Y, Yan N, et al. 2023. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. CATENA. 220:106708. doi: 10.1016/j.catena.2022.106708.
  • Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, Li T. 2014. Lead phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf. 103:101–107. doi: 10.1016/j.ecoenv.2013.10.016.
  • Rahman IMM, Begum ZA, Sawai H. 2016. Solidification/stabilization: a remedial option for metal contaminated soils. In: Hasegawa H, Rahman IMM, Rahman MA, editors. Environmental remediation technologies for metal-contaminated soils. Tokyo, Japan: Springer. p. 125–146.
  • Ren X, Shao D, Yang S, Hu J, Sheng G, Tan X, Wang XK. 2011. Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chem Eng J. 170(1):170–177. doi: 10.1016/j.cej.2011.03.050.
  • Shao Y, Imran, Ortaş İ. 2023. Impact of mycorrhiza on plant nutrition and food security. J Plant Nutr. 46:1–26. doi: 10.1080/01904167.2023.2192780.
  • Spurgeon DJ, Stürzenbaum SR, Svendsen C, Hankard PK, Morgan AJ, Weeks JM, Kille P. 2004. Toxicological, cellular and gene expression responses in earthworms exposed to copper and lead. Comp Biochem Physiol C Toxicol Pharmacol. 138(1):11–21. doi: 10.1016/j.cca.2004.04.003.
  • Sun Y, Sun G, Xu Y, Liu W, Liang X, Wang L. 2005. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of lead-contaminated soils. J Environ Manage. 166:204–210. doi: 10.1016/j.jenvman.2015.10.017.
  • Tabaraki R, Ahmady-Asbchin S, Abdi O. 2013. Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. J Environ Chem Eng. 1(3):604–608. doi: 10.1016/j.jece.2013.06.024.
  • Tang X, Li Q, Wu M, Lin L, Scholz M. 2016. Review of remediation practices regarding lead-enriched farmland soil with particular reference to China. J Environ Manage. 181:646–662. doi: 10.1016/j.jenvman.2016.08.043.
  • Tlustoš P, Száková J, Kořínek K, Pavlíková D, Hanč A, Balík J. 2006. The effect of liming on lead, lead and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ. 52(1):16–24. doi: 10.17221/3341-PSE.
  • Uddin MK. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. 308:438–462. doi: 10.1016/j.cej.2016.09.029.
  • Ullah S, Ali R, Mahmood S, Atif Riaz M, Akhtar K. 2020. Differential growth and metal accumulation response of Brachiaria mutica and Leptochloa fusca on cadmium and lead contaminated soil. Soil Sediment Contam. 29(8):844–859. doi: 10.1080/15320383.2020.1777935.
  • Ullah S, Depar N, Khan D, Memon AA, Ali A, Naeem A. 2024. Selenate and selenite induced differential morphophysiological modifications to mitigate arsenic toxicity and uptake by wheat. Soil Sediment Contam. 33(3):331–352. doi: 10.1080/15320383.2023.2204956.
  • Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S. 2019. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Int J Phytoremediation. 21(10):1012–1018. doi: 10.1080/15226514.2019.1594683.
  • Ullah S, Naeem A, Calkaite I, Hosney A, Depar N, Barcauskaite K. 2023. Zinc (Zn) mitigates copper (Cu) toxicity and retrieves yield and quality of lettuce irrigated with Cu and Zn-contaminated simulated wastewater. Environ Sci Pollut Res Int. 30(19):54800–54812. doi: 10.1007/s11356-023-26250-8.
  • Ullah S, Sajid M, Rehmat A, Muhammad RK, Kalsoom A, Nizamuddin D. 2021. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Chemosphere. 269:128728. doi: 10.1016/j.chemosphere.2020.128728.
  • Ullah S, Zafar I, Sajid M, Kalsoom A, Rehmat A. 2020. Phytoextraction potential of different grasses for the uptake of cadmium and lead from industrial wastewater. Soil Environ. 39(1):77–86. doi: 10.25252/SE/2020/91796.
  • Van Poucke R, Ainsworth J, Maeseele M, Ok YS, Meers E, Tack FMG. 2018. Chemical stabilization of Pb-contaminated soil using nano-carbon. Appl Geochem. 88:122–130.
  • Wang QR, Dong Y, Cui Y, Liu X. 2001. Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam. 10(5):497–510. doi: 10.1080/20015891109392.
  • Wang Y-N, Wang Q, Li Y, Wang H, Gao Y, Sun Y, Wang B, Bian R, Li W, Zhan M. 2023. Impact of incineration slag co-disposed with municipal solid waste on methane production and methanogens ecology in landfills. Bioresour Technol. 377:128978. doi: 10.1016/j.biortech.2023.128978.
  • Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG. 2009. Occurrence and partitioning of lead, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol. 43(3):637–642. doi: 10.1021/es802412r.
  • Wu Y, Chen Y. 2013. Food safety in China. J Epidemiol Community Health. 67(6):478–479. doi: 10.1136/jech-2012-201767.
  • Xu Y, Liang XF, Xu YM, Qin X, Huang QQ, Wang L, Sun YB. 2017. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere. 27(2):193–204. doi: 10.1016/S1002-0160(17)60310-2.
  • Yan GY, Viraraghavan T. 2003. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37(18):4486–4496. doi: 10.1016/S0043-1354(03)00409-3.
  • Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 16:722–729. doi: 10.1016/j.proenv.2012.10.099.
  • Zama EF, Zhu YG, Reid BJ, Sun GX. 2017. The role of nano-carbon properties in influencing the sorption and desorption of Pb(II), Pb(II) and As(III) in aqueous solution. J Clean Prod. 148:127–136. doi: 10.1016/j.jclepro.2017.01.125.
  • Zhang M, Wu Y, Li Y, Zhou R, Yu H, Zhu X, Quan H, Li Y. 2024. Risk assessment for the long-term stability of fly ash-based cementitious material containing arsenic: dynamic and semidynamic leaching. Environ Pollut. 345:123361. doi: 10.1016/j.envpol.2024.123361.
  • Zhang T, Li H, Yan T, Shaheen SM, Niu Y, Xie S, Zhang Y, Abdelrahman H, Ali EF, Bolan NS, et al. 2023. Organic matter stabilization and phosphorus activation during vegetable waste composting: multivariate and multiscale investigation. Sci Total Environ. 891:164608. doi: 10.1016/j.scitotenv.2023.164608.
  • Zhang T, Song B, Han G, Zhao H, Hu Q, Zhao Y, Liu H. 2023. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: a meta-analysis. Land Degrad Dev. 34(11):3340–3349. doi: 10.1002/ldr.4687.
  • Zhao Y, Hao Y, Cheng K, Wang L, Dong W, Liu Z, Yang F. 2024. Artificial humic acid mediated migration of phosphorus in soil: experiment and modelling. CATENA. 238:107896. doi: 10.1016/j.catena.2024.107896.
  • Zhao Y, Song J, Cheng K, Liu Z, Yang F. 2024. Migration and remediation of typical contaminants in soil and groundwater: a state of art review. Land Degrad Dev. 35(8):2700–2715. doi: 10.1002/ldr.5103.
  • Zhuang P, Li ZA, Mcbride MB, Zou B, Wang G. 2013. Health risk assessment for consumption of fish originating from ponds near Dabaoshan Mine, South China. Environ Sci Pollut Res Int. 20(8):5844–5854. doi: 10.1007/s11356-013-1606-0.
  • Żukowska J, Biziuk M. 2008. Methodological evaluation of method for dietary heavy metal intake. J Food Sci. 73(2):21–29. doi: 10.1111/j.1750-3841.2007.00648.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.