0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green solutions: evaluating the impact of Chlorella sorokiniana and Anabaena laxa on captan phycoremediation

, , , &

References

  • AbdElgawad H, Abuelsoud W, Madany MMY, Selim S, Zinta G, Mousa ASM, Hozzein WN. 2020. Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules. 10(12):1675. doi: 10.3390/biom10121675.
  • Al Jaouni S, Saleh AM, Wadaan MA, Hozzein WN, Selim S, AbdElgawad H. 2018. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J Plant Physiol. 224–225:121–131. doi: 10.1016/j.jplph.2018.03.016.
  • Amara A, Quiniou F, Durand G, El Bour M, Boudabous A, Hourmant A. 2013. Toxicity of epoxiconazole to the marine diatom Chaetoceros calcitrans: influence of growth conditions and algal development stage. Water Air Soil Pollut. 224(2):1417. doi: 10.1007/s11270-012-1417-9.
  • Anand G, Rajeshkumar KC. 2022. Challenges and threats posed by plant pathogenic fungi on agricultural productivity and economy. In: Fungal diversity, ecology and control management. Springer. p. 483–493. doi: 10.1007/978-981-16-8877-5_23.
  • Ankit Bauddh K, Korstad J. 2022. Phycoremediation: use of algae to sequester heavy metals. Hydrobiology. 1(3):288–303. doi: 10.3390/hydrobiology1030021.
  • Baglieri A, Sidella S, Barone V, Fragalà F, Silkina A, Nègre M, Gennari M. 2016. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res Int. 23(18):18165–18174. doi: 10.1007/s11356-016-6996-3.
  • Balasubramanya R, Patil R. 1980. Degradation of carboxin and oxycarboxin by microorganisms. Plant Soil. 57(2–3):457–461. doi: 10.1007/BF02211702.
  • Banerjee A, Banerjee A. 1987. Influence of captan on some microorganisms and microbial processes related to the nitrogen cycle. Plant Soil. 102(2):239–245. doi: 10.1007/BF02370709.
  • Bi YF, Miao SS, Lu YC, Qiu CB, Zhou Y, Yang H. 2012. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mater. 243:242–249. doi: 10.1016/j.jhazmat.2012.10.021.
  • Bischoff HW. 1963. Phycological studies. IV. Some soil algae from enchanted rock and related algal species. Vol. 6318. University of Texas Publication. https://cir.nii.ac.jp/crid/1370283693228434442
  • Bryan G, Darracott A. 1979. Bioaccumulation of marine pollutants. Philos Trans R Soc Lond B Biol Sci. 286(1015):483–505. doi: 10.1098/rstb.1979.0042.
  • Chen S-K, Edwards CA, Subler S. 2001. A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Appl Soil Ecol. 18(1):69–82. doi: 10.1016/S0929-1393(01)00135-4.
  • de Souza RM, Seibert D, Quesada HB, de Jesus Bassetti F, Fagundes-Klen MR, Bergamasco R. 2020. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ Protect. 135:22–37. doi: 10.1016/j.psep.2019.12.035.
  • Debnath M, Mandal NC, Ray S. 2012. Effect of fungicides and insecticides on growth and enzyme activity of four cyanobacteria. Indian J Microbiol. 52(2):275–280. doi: 10.1007/s12088-011-0212-4.
  • Dewanjee S, Bhattacharjee N, Chakraborty P, Bhattacharjee S. 2021. Carotenoids as antioxidants. In: Carotenoids: structure and function in the human body. p. 447–473. doi: 10.1007/978-3-030-46459-2_12.
  • Di Ciocco CA, Rodríguez Cáceres E. 1997. Effect of the fungicide captan on Azospirillum brasilense Cd in pure culture and associated with Setaria italica. Rev Argent Microbiol. 29(3):152–156.
  • Ding T, Li W, Li J. 2019. Toxicity and metabolic fate of the fungicide carbendazim in the typical freshwater diatom Navicula species. J Agric Food Chem. 67(24):6683–6690. doi: 10.1021/acs.jafc.8b06179.
  • Dunfield KE, Siciliano SD, Germida JJ. 2000. The fungicides thiram and captan affect the phenotypic characteristics of Rhizobium leguminosarum strain C1 as determined by FAME and Biolog analyses. Biol Fertil Soils. 31(3–4):303–309. doi: 10.1007/s003740050660.
  • El-Nahhal Y, El-Hams S. 2017. Effects of bromacil, malathion and thiabendazole on cyanobacteria mat growth. Int J Appl Sci Res Rev. 4(1):1–9. doi: 10.21767/2349-7238.100053.
  • Fathy WA, AbdElgawad H, Hashem AH, Essawy E, Tawfik E, Al-Askar AA, Abdelhameed MS, Hammouda O, Elsayed KN. 2023. Exploring exogenous indole-3-acetic acid’s effect on the growth and biochemical profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules. 28(14):5501. doi: 10.3390/molecules28145501.
  • Gale GR, Smith AB, Atkins LM, Walker EMJr, Gadsden RH. 1971. Pharmacology of captan: biochemical effects with special reference to macromolecular synthesis. Toxicol Appl Pharmacol. 18(2):426–441. doi: 10.1016/0041-008x(71)90135-9.
  • Ghasemi Y, Rasoul‐Amini S, Fotooh‐Abadi E. 2011. The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae 1. J Phycol. 47(5):969–980. doi: 10.1111/j.1529-8817.2011.01051.x.
  • Griffith R, Matthews S. 1969. The persistence in soil of the fungicidal seed dressings captan and thiram. Ann Appl Biol. 64(1):113–118. doi: 10.1111/j.1744-7348.1969.tb02861.x.
  • Gupta A, Kumar R. 2020. Management of seed-borne diseases: an integrated approach. In: Seed-borne diseases of agricultural crops: detection, diagnosis & management. p. 717–745. doi: 10.1007/978-981-32-9046-4_25.
  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R. 2013. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res. 2(2):79–97. doi: 10.1016/j.algal.2013.01.006.
  • Hamed S, Okla M, Al-Saadi LS, Hozzein W, Mohamed H, Selim S, AbdElgawad H. 2022. Evaluation of the phycoremediation potential of microalgae for captan removal: comprehensive analysis on toxicity, detoxification and antioxidants modulation. J Hazard Mater. 427:128177. doi: 10.1016/j.jhazmat.2021.128177.
  • Hamed SM, Hozzein WN, Selim S, Mohamed HS, AbdElgawad H. 2021. Dissipation of pyridaphenthion by cyanobacteria: insights into cellular degradation, detoxification and metabolic regulation. J Hazard Mater. 402:123787. doi: 10.1016/j.jhazmat.2020.123787.
  • Heilmann B, Lebuhn M, Beese F. 1995. Methods for the investigation of metabolic activities and shifts in the microbial community in a soil treated with a fungicide. Biol Fertil Soils. 19(2–3):186–192. doi: 10.1007/BF00336157.
  • Hochstein PE, Cox CE. 1956. Studies on the fungicidal action of N-(trichloromethylthio)-4-cyclohexene-1,2-dicarboximide (captan). Am J Bot. 43(6):437–441. doi: 10.2307/2439021.
  • Holanda FH, Birolli WG, Morais E, Sena IS, Ferreira AM, Faustino SMMM, Solon LGS, Porto ALM, Ferreira IM. 2019. Study of biodegradation of chloramphenicol by endophytic fungi isolated from Bertholletia excelsa (Brazil nuts). Biocatal Agric Biotechnol. 20:101200.
  • Huang L, Lu D, Diao J, Zhou Z. 2012. Enantioselective toxic effects and biodegradation of benalaxyl in Scenedesmus obliquus. Chemosphere. 87(1):7–11. doi: 10.1016/j.chemosphere.2011.11.029.
  • Kim B-H, Ramanan R, Kang Z, Cho D-H, Oh H-M, Kim H-S. 2016. Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyperaccumulates lipid droplets in seawater salinity. Biomass Bioenergy. 85:300–305. doi: 10.1016/j.biombioe.2015.12.026.
  • Kim J-A, Kong C-S, Kim S-K. 2010. Effect of Sargassum thunbergii on ROS mediated oxidative damage and identification of polyunsaturated fatty acid components. Food Chem Toxicol. 48(5):1243–1249. doi: 10.1016/j.fct.2010.02.017.
  • Kobbia I, Shabana E, Khalil Z, Zaki F. 1991. Growth criteria of two common cyanobacteria isolated from Egyptian flooded soil, as influenced by some pesticides. Water Air Soil Pollut. 60(1–2):107–116. doi: 10.1007/BF00293969.
  • Krieger RI, Dinoff TM. 2000. Captan fungicide exposures of strawberry harvesters using THPI as a urinary biomarker. Arch Environ Contam Toxicol. 38(3):398–403. doi: 10.1007/s002449910053.
  • Krinsky NI. 1979. Carotenoid protection against oxidation. Pure Appl Chem. 51(3):649–660. doi: 10.1351/pac197951030649.
  • Kurade MB, Kim JR, Govindwar SP, Jeon B-H. 2016. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 20:126–134. doi: 10.1016/j.algal.2016.10.003.
  • Lagus A, Suomela J, Helminen H, Sipura J. 2007. Impacts of nutrient enrichment and sediment on phytoplankton community structure in the northern Baltic Sea. Hydrobiologia. 579(1):351–368. doi: 10.1007/s10750-006-0491-7.
  • Leandro MR, Andrade LF, de Souza Vespoli L, Soares FS, Moreira JR, Pimentel VR, Barbosa RR, de Oliveira MVV, Silveira V, de Souza Filho GA. 2021. Combination of osmotic stress and sugar stress response mechanisms is essential for Gluconacetobacter diazotrophicus tolerance to high-sucrose environments. Appl Microbiol Biotechnol. 105(19):7463–7473. doi: 10.1007/s00253-021-11590-7.
  • Li H, Zhao Q, Huang H. 2019. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ. 669:258–272. doi: 10.1016/j.scitotenv.2019.03.104.
  • Li T, Wang W, Yuan C, Zhang Y, Xu J, Zheng H, Xiang W, Li A. 2020. Linking lipid accumulation and photosynthetic efficiency in Nannochloropsis sp. under nutrient limitation and replenishment. J Appl Phycol. 32(3):1619–1630. doi: 10.1007/s10811-020-02056-w.
  • Lizzul AM, Lekuona-Amundarain A, Purton S, Campos LC. 2018. Characterization of Chlorella sorokiniana, UTEX 1230. Biology. 7(2):25. doi: 10.3390/biology7020025.
  • Lizzul AM. 2016. Integrated production of algal biomass UCL. London: University College London.
  • Mackinney G. 1941. Absorption of light by chlorophyll solutions. J Biol Chem. 140(2):315–322. doi: 10.1016/S0021-9258(18)51320-X.
  • Martínez-Toledo MV, Salmerón V, Rodelas B, Pozo C, González-López J. 1998. Effects of the fungicide Captan on some functional groups of soil microflora. Appl Soil Ecol. 7(3):245–255. doi: 10.1016/S0929-1393(97)00026-7.
  • Megadi VB, Tallur PN, Mulla SI, Ninnekar HZ. 2010. Bacterial degradation of fungicide captan. J Agric Food Chem. 58(24):12863–12868. doi: 10.1021/jf1030339.
  • Mofeed J, El-Bilawy EH. 2020. Toxicity and disruptive impacts of fenhexamid fungicide against the green alga, Chlorella vulgaris. Egypt Acad J Biol Sci F Toxicol Pest Control. 12(1):45–57. doi: 10.21608/eajbsf.2020.78133.
  • Mohapatra P, Mohanty R. 1992. Growth pattern changes of Chlorella vulgaris and Anabaena doliolum due to toxicity of dimethoate and endosulfan. Bull Environ Contam Toxicol. 49(4):576–581. doi: 10.1007/BF00196301.
  • Mostafa FI, Helling CS. 2002. Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. J Environ Sci Health B. 37(5):417–444. doi: 10.1081/PFC-120014873.
  • Murwanashyaka T, Liang S, Ndayambaje JD, Wang Y, He N, Lu Y. 2017. Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters. Algal Res Biomass Biofuels Bioprod. 24:467–476. doi: 10.1016/j.algal.2016.08.002.
  • Mustafa S, Bhatti HN, Maqbool M, Iqbal M. 2021. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: prospects, challenges and opportunities. J Water Process Eng. 41:102009. doi: 10.1016/j.jwpe.2021.102009.
  • Nong Q-Y, Liu Y-A, Qin L-T, Liu M, Mo L-Y, Liang Y-P, Zeng H-H. 2021. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere. 262:127793. doi: 10.1016/j.chemosphere.2020.127793.
  • Oruc HH. 2010. Fungicides and their effects on animals. In: Carisse O, editor. Fungicides. In-Tech Publishers. p. 349–362.
  • Panchal P, Miller AJ, Giri J. 2021. Organic acids: versatile stress-response roles in plants. J Exp Bot. 72(11):4038–4052. doi: 10.1093/jxb/erab019.
  • Pereira AL. 2017. The unique symbiotic system between a fern and a cyanobacterium, Azolla–Anabaena azollae: their potential as biofertilizer, feed, and remediation. In: Symbiosis. Rijeka: IntechOpen. Ch. 2.
  • Prasad SM, Zeeshan M, Kumar D. 2011. Toxicity of endosulfan on growth, photosynthesis, and nitrogenase activity in two species of Nostoc (Nostoc muscorum and Nostoc calcicola). Toxicol Environ Chem. 93(3):513–525. doi: 10.1080/02772248.2010.542157.
  • Priyadharshini SD, Babu PS, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N. 2021. Phycoremediation of wastewater for pollutant removal: a green approach to environmental protection and long-term remediation. Environ Pollut. 290:117989. doi: 10.1016/j.envpol.2021.117989.
  • Ren P, Sun A, Jiao X, Chen Q-L, Li F, He J-Z, Hu H-W. 2024. National-scale investigation reveals the dominant role of phyllosphere fungal pathogens in sorghum yield loss. Environ Int. 185:108511. doi: 10.1016/j.envint.2024.108511.
  • Satheesan A. 2024. Technical information on onions and their post-harvest disease management. Int J Sci Res Eng Trends. 10(1).
  • Scavetta R, Chu D, Gosar J, Siedel R, Hoyt J, Schegg K, Welch W. 1990. Captan produces differential, in vivo inhibition of esterase activity in Penicillium dupontii and Penicillium chrysogenum. Pestic Biochem Physiol. 38(1):81–91. doi: 10.1016/0048-3575(90)90152-R.
  • Shackira A, Sarath NG, Puthur JT. 2022. Phycoremediation: a means for restoration of water contamination. Environ Sustain. 5(1):25–38. doi: 10.1007/s42398-022-00220-1.
  • Sinha AK, Giblen T, AbdElgawad H, De Rop M, Asard H, Blust R, De Boeck G. 2013. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat Toxicol. 130–131:86–96. doi: 10.1016/j.aquatox.2013.01.003.
  • Soeder CJ, Liersch R, Trültzsch U. 1969. Differential action of captan on the growth of some strains of Chlorella and Scenedesmus. Arch Mikrobiol. 67(2):166–172.
  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 35(2):171–205. doi: 10.1128/MMBR.35.2.171-205.1971.
  • Sundbäck K, Petersen DG, Dahllöf I, Larson F. 2007. Combined nutrient–toxicant effects on a shallow-water marine sediment system: sensitivity and resilience of ecosystem functions. Mar Ecol Prog Ser. 330:13–30. doi: 10.3354/meps330013.
  • Sunny‐Roberts EO, Knorr D. 2008. Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiol. 25(1):183–189. doi: 10.1016/j.fm.2007.05.003.
  • Tahjib-Ul-Arif M, Zahan MI, Karim MM, Imran S, Hunter CT, Islam MS, Mia MA, Hannan MA, Rhaman MS, Hossain MA, et al. 2021. Citric acid-mediated abiotic stress tolerance in plants. Int J Mol Sci. 22(13):7235. doi: 10.3390/ijms22137235.
  • Touliabah HE-S, El-Sheekh MM, Ismail MM, El-Kassas H. 2022. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules. 27(3):1141. doi: 10.3390/molecules27031141.
  • Tsaboula A, Papadakis E-N, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E. 2016. Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environ Int. 91:78–93. doi: 10.1016/j.envint.2016.02.008.
  • Upadhyay AK, Singh R, Singh D. 2019. Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management. p. 423–435. doi: 10.1007/978-981-10-8669-4_18.
  • Vitoratos A, Chachalis D, Travlos I, Bilalis D, Ziogas BN. 2015. The effects of captafol on mitosis of aspergillus nidulans through light and electron microscopic investigations. Emir J Food Agric. 27(12):878–882. doi: 10.9755/ejfa.2015-04-120.
  • Widenfalk A, Bertilsson S, Sundh I, Goedkoop W. 2008. Effects of pesticides on community composition and activity of sediment microbes – responses at various levels of microbial community organization. Environ Pollut. 152(3):576–584. doi: 10.1016/j.envpol.2007.07.003.
  • Xiong Q, Hu L-X, Liu Y-S, Wang T-T, Ying G-G. 2019. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat Toxicol. 207:197–207. doi: 10.1016/j.aquatox.2018.12.017.
  • Zhang M, Liu W, Qu Q, Ke M, Zhang Z, Zhou Z, Lu T, Qian H. 2020. Metabolomic modulations in a freshwater microbial community exposed to the fungicide azoxystrobin. J Environ Sci. 97:102–109. doi: 10.1016/j.jes.2020.04.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.