682
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Improving settlement selection for small-scale maps using data enrichment and machine learning

ORCID Icon & ORCID Icon
Pages 111-127 | Received 30 Apr 2016, Accepted 15 Dec 2016, Published online: 12 Jan 2017

References

  • Ai, T., & Liu, Y. (2004). Analysis and simplification of point cluster based on Delaunay triangulation model. In Z. Li, Q. Zhou, & W. Kainz (Eds.), Advances in spatial analysis and decision making (pp. 9–19). London: Taylor & Francis.
  • Aliakbarian, M., & Weibel, R. (2016, June). Integration of folksonomies into the process of map generalization. ICA Workshop on Generalization and Multiple Representation, Helsinki, Finland. http://tinyurl.com/hyttlzk
  • Armstrong, M. P. (1991). Knowledge classification and organization. In B. Buttenfield & R. McMaster (Eds.), Map generalization: Making rules for knowledge representation (pp. 86–102). Harlow, UK: Longman.
  • Balley, S., Baella, B., Christophe, S., Pla, M., Regnauld, N., & Stoter, J. (2014). Map specifications and user requirements. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 17–52). Cham, Switzerland: Springer International. doi:10.1007/978-3-319-00203-3_2
  • Batty, M. (2006). Hierarchy in cities and city systems. In D. Pumain (Ed.), Hierarchy in Natural and Social Sciences (pp. 143–168). Dordrecht, Netherlands: Springer. doi:10.1007/1-4020-4127-6_7
  • Bobzien, M., Burghardt, D., Petzold, I., Neun, M., & Weibel, R. (2008). Multi-representation databases with explicitly modeled horizontal, vertical and update relations. Cartography and Geographic Information Science, 35(1), 3–16. doi:10.1559/152304008783475698
  • Brassel, K. E., & Weibel, R. (1988). A review and conceptual framework of automated map generalization. International Journal of Geographical Information Systems, 2(3), 229–244. doi:10.1080/02693798808927898
  • Burghardt, D., Duchêne, C., & Mackaness, W. A. (2014). Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation. Cham, Switzerland: Springer International.
  • Buttenfield, B. P., & McMaster, R. B. (1991). Map generalization: Making rules for knowledge representation. Harlow, UK: Longman.
  • Carol, H. (1960). The hierarchy of central functions within the city. Annals of the Association of American Geographers, 50(4), 419–438. doi:10.1111/j.1467-8306.1960.tb00359.x
  • Central Statistical Office. (2015). Area and population in the territorial profile in 2015: Statistical information and elaborations. Central Statistical Office: Warsaw. http://tinyurl.com/ntcqssv
  • Chang, H., & McMaster, R. B. (1993). Interface design and knowledge acquisition for cartographic generalization. In Proceedings AutoCarto 9 (pp. 187–196). Bethesda, MD: ACSM/ASPRS. http://tinyurl.com/pc6skh5
  • Dixon, O. M. (1967). The selection of towns and other features on Atlas maps of Nigeria. The Cartographic Journal, 4(1), 16–23. doi:10.1179/caj.1967.4.1.16
  • Duchêne, C., Baella, B., Brewer, C. A., Burghardt, D., Buttenfield, B. P., Gaffuri, J., … Wiedemann, A. (2014). Generalisation in practice within national mapping agencies. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 329–391). Cham, Switzerland: Springer International. doi:10.1007/978-3-319-00203-3_11.
  • Duchêne, C., Dadou, M., & Ruas, A. (2005, July). Helping the capture of expert knowledge to support generalization. ICA Workshop on Generalization and Multiple Representation, A Coruña Spain. http://tinyurl.com/plsum7c
  • Dutton, G., & Edwardes, A. J. (2006). Ontological modeling of geographical relationships for map generalization. ICA Workshop on Generalization and Multiple Representation, Portland, OR. http://tinyurl.com/njtlkzf
  • Flewelling, D. M., & Egenhofer, M. J. (1993). Formalizing importance: Parameters for settlement selection from a geographic database. In Auto-carto 11: Proceedings, (pp. 167–175). Bethesda, MD: ASPRS/ACSM. Also online at: http://tinyurl.com/jabyyuv
  • Geisser, S. (1993). Predictive inference: an introduction. New York: Chapman and Hall.
  • GGK. (1993–1997). Atlas Rzeczypospolitej Polskiej. Mapa 1:500 000, Główny Geodeta Kraju, Warszawa [Atlas of the Republic Poland, 1: 500 000 map, The Surveyor General of Poland, Warsaw, 1993–1997]. Warsaw: Head Office of Geodesy and Cartography.
  • Girres, J.-F., & Touya, G. (2010). Quality assessment of the French openstreetmap dataset. Transactions in GIS, 14(4), 435–459. doi:10.1111/j.1467-9671.2010.01203.x
  • GUGiK. (2011). Regulation of the Ministry of the Interior from 17 of November 2011 on the topographic objects database and general objects database as well as standard cartographic products. Head Office of Geodesy and Cartography guidelines.
  • Harrie, L., & Weibel, R. (2007). Modelling the overall process of generalisation. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information: Cartographic modelling and applications (pp. 67–87). Amsterdam: Elsevier.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning. Data mining, inference and prediction (2nd ed.). New York,: Springer.
  • Kadmon, N. (1972). Automated selection of settlements in map generalisation. The Cartographic Journal, 9(2), 93–98. doi:10.1179/000870472787352442
  • Karsznia, I. (2013). Selected aspects of settlement generalization in the general geographic database in Poland. Geodesy and Cartography, 39(3), 129–137. doi:10.3846/20296991.2013.840408
  • Kilpeläinen, T. (2000). Knowledge acquisition for generalization rules. Cartography and Geographic Information Science, 27(1), 41–50. doi:10.1559/152304000783547993
  • Kulik, L., Duckham, M., & Egenhofer, M. (2005). Ontology-driven map generalization. Journal of Visual Languages & Computing, 16(3), 245–267. doi:10.1016/j.jvlc.2005.02.001
  • Langran, C. N., & Poiker, T. K. (1986). Integration of name selection and name placement. In Proceedings of 2nd International Symposium on Spatial Data Handling (pp. 50–64). Seattle, WA: International Geographical Union.
  • Leitner, M., & Buttenfield, B. P. (1995). Acquisition of procedural cartographic knowledge by reverse engineering. Cartography and Geographic Information Science, 22(3), 232–241. doi:10.1559/152304095782540320
  • Li, Z. (2007). Algorithmic foundation of multi-scale spatial representation. Boca Raton, FL: CRC Press.
  • Mackaness, W. A. (2006). Automated cartography in a bush of ghosts. cartography and geographic information science. 33(4), 245–256. doi:10.1559/152304006779500678
  • Mackaness, W. A., Burghardt, D., & Duchêne, C. (2014). Map generalisation: Fundamental to the modelling and understanding of geographic space. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 1–15). Cham, Switzerland: Springer International..
  • Mackaness, W. A., & Gould, N. M. (2014, September). The role of geography in automated generalization. ICA Workshop on Generalization and Multiple Representation, Vienna, Austria. http://tinyurl.com/hozn5tj
  • Mackaness, W. A., Ruas, A., & Sarjakoski, L. T. (2007). Generalisation of geographic information: Cartographic modelling and applications. Amsterdam: Elsevier.
  • Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
  • Müller, J. C., & Mouwes, P. J. (1990). Knowledge acquisition and representation for rule based map generalization: An example from the Netherlands. In Proceedings of GIS/LIS 90, (pp. 58–67). Falls Church, VA: American Congress on Surveying and Mapping.
  • Müller, J. C., Weibel, R., Lagrange, J. P., & Salgé, F. (1995). Generalization: State of the art and issues. In J. C. Müller, J. P. Lagrange, & R. Weibel (Eds.), GIS and generalization. Methodology and practice (pp. 3–17). London: Taylor & Francis.
  • Mustière, S. (2005). Cartographic generalization of roads in a local and adaptive approach: A knowledge acquistion problem. International Journal of Geographical Information Science, 19(8–9), 937–955. doi:10.1080/13658810509161245
  • Mustière, S., Zucker, J.-D., & Saitta, L. (2000). An abstraction-based machine learning approach to cartographic generalization. In Proceedings of 9th international symposium on spatial data handling (pp. 50–63). Beijing: Study Group on Geographical Information Science of the International Geographical Union.
  • Neun, M. (2007). Data enrichment for adaptive map generalization using web services ( Doctoral thesis). University of Zurich, http://tinyurl.com/ohhblh6
  • Neun, M., Burghardt, D., & Weibel, R. (2008). Web service approaches for providing structural cartographic knowledge to generalisation operators. International Journal of Geographical Information Science, 22(2), 133–165. doi:10.1080/13658810701348997
  • Plazanet, C., Bigolin, N. M., & Ruas, A. (1998). Experiments with learning techniques for spatial model enrichment and line generalization. Geoinformatica International Journal Issue, 2(4), 315–333. doi:10.1023/A:1009753320636
  • Rapid Miner Reference Manual. (2016). Retrieved August 3, 2016, from http://docs.rapidminer.com/studio/operators/rapidminer-studio-operator-reference.pdf
  • Rapid Miner User Manual. (2014). Retrieved August 3, 2016, from http://docs.rapidminer.com/downloads/RapidMiner-v6-user-manual.pdf
  • Ratajski, L. (1973). Rozważania generalizacji kartograficznej [Considerations in cartographic generalization]. Polski Przegld Kartograficzny, 5(2), 49–54. Part I); 5 (3):103–110 (Part II)
  • Richardson, D. E., & Müller, J.-C. (1991). Rule selection for small-scale map generalization. In B. Buttenfield & R. McMaster (Eds.), Map generalization: Making rules for knowledge representation (pp. 136–149). Harlow, England: Longman.
  • Ruas, A., Dyèvre, A., Duchêne, C., & Taillandier, P. (2006). Methods for improving and updating the knowledge of a generalization system. Paper presented at AutoCarto 2006.http://www.cartogis.org/docs/proceedings/2006/ruas_dyevre_duchene_taillandier.pdf
  • Samsonov, T. E., & Krivosheina, A. M. (2012, July). Joint generalization of city points and road network for small-scale mapping Paper presented at GIScience 2012: Seventh International Conference on Geographic Information Science, Columbus, OH. http://www.giscience.org/past/2012/proceedings/abstracts/giscience2012_paper_129.pdf
  • Sarjakoski, L. T (2007). Conceptual Models of Generalisation and Multiple Representation. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (eds.), Generalisation of geographic information: cartographic modelling and applications (pp. 11–35). Amsterdam: Elsevier.
  • Sheeren, D., Mustière, S., & Zucker, J.-D. (2009). A data-mining approach for assessing consistency between multiple representations in spatial databases. International Journal of Geographical Information Science, 23(8), 961–992. doi:10.1080/13658810701791949
  • Smith, R. H. T. (1965). Method and purpose in functional town classification. Annals of the Association of American Geographers, 55(3), 539–548. doi:10.1111/j.1467-8306.1965.tb00534.x
  • Stanislawski, L. V., Buttenfield, B. P., Bereuter, P., Savino, S., & Brewer, C. A. (2014). Generalization operators. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 157–196). Cham, Switzerland: Springer International.
  • Steiniger, S., Taillandier, P., & Weibel, R. (2010). Utilising urban context recognition and machine learning to improve the generalisation of buildings. International Journal of Geographical Information Science, 24(2), 253–282. doi:10.1080/13658810902798099
  • Steiniger, S., & Weibel, R. (2007). Relations among map objects in cartographic generalization. Cartography and Geographic Information Science, 34(3), 175–197. doi:10.1559/152304007781697866
  • Stoter, J., Baella, B., Blok, C., Burghardt, D., Duchêne, C., Pla, M., … Touya, G. (2010). State of the art of automated generalisation in commercial software. EuroSDR official publication no. 58. http://www.eurosdr.net/sites/default/files/uploaded_files/58.pdf
  • Stoter, J., Post, M., van Altena, V., Nijhuis, R., & Bruns, B. (2014). Fully automated generalization of a 1:50k map from 1:10k data. Cartography and Geographic Information Science, 41(1), 1–13. doi:10.1080/15230406.2013.824637
  • Stoter, J., Van Smaalen, J., Bakker, N., & Hardy, P. (2009). Specifying map requirements for automated generalization of topographic data. The Cartographic Journal, 46(3), 214–227. doi:10.1179/174327709X446637
  • Töpfer, F., & Pillewizer, W. (1966). The principles of selection. The Cartographic Journal, 3(1), 10–16. doi:10.1179/caj.1966.3.1.10
  • Touya, G., & Brando, C. (2013). Detecting level-of-detail inconsistencies in volunteered geographic information data sets. Cartographica, 48(2), 134–143. doi:10.3138/carto.48.2.1836
  • van Kreveld, M., van Oostrum, R., & Snoeyink, J. (1997). Efficient settlement selection for interactive display. In 1997 ACSM/ASPRS Annual Convention & Exposition. Volume 5, Auto-Carto 13 (pp. 287–296). Bethesda, MD: ACSM/ASPRS. Also available at: http://mapcontext.com/autocarto/proceedings/auto-carto-13/pdf/efficient-settlement-selection-for-interactive-display.pdf/
  • Weibel, R. (1995). Three essential building blocks for automated generalization. In J. C. Müller, J. P. Lagrange, & R. Weibel (Eds.), GIS and generalization. methodology and practice (pp. 3–17). London: Taylor & Francis.
  • Weibel, R., Keller, S., & Reichenbacher, T. (1995). Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence. Lecture Notes in Computer Science. Proceedings COSIT ‘95, (Vol. 988): (pp. 139–156). Berlin: Springer. doi:10.1007/3-540-60392-1_10
  • Welling, M. (2010). A first encounter with machine learning [course notes]. Donald Bren School of Information and Computer Science, University of California Irvine. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.433.8100&rep=rep1&type=pdf
  • West-Nielsen, P., & Meyer, M. (2007). Automated generalisation in a map production environment – the KMS experience. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information: Cartographic modelling and applications (pp. 301–313). Amsterdam: Elsevier.
  • Yan, H., & Weibel, R. (2008). An algorithm for point cluster generalization based on the Voronoi diagram. Computers & Geosciences, 34(8), 939–954. doi:10.1016/j.cageo.2007.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.