872
Views
2
CrossRef citations to date
0
Altmetric
Articles

(re)Considering Bertin in the age of big data and visual analytics

ORCID Icon
Pages 101-118 | Received 02 Jan 2018, Accepted 31 Jul 2018, Published online: 12 Oct 2018

References

  • Anand, A., & Talbot, J. (2016). Automatic selection of partitioning variables for small multiple displays. IEEE Transactions on Visualization and Computer Graphics, 22(1), 669–677. doi:10.1109/TVCG.2015.2467323
  • Andrienko, G., Andrienko, N., Fuchs, G., & Wood, J. (2017). Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE Transactions on Visualization and Computer Graphics, 23(9), 2232–2249. doi:10.1109/TVCG.2016.2616404
  • Andrienko, G., Andrienko, N., & Weibel, R. (2017). Geographic data science. IEEE Computer Graphics and Applications, 37(5), 15–17. doi:10.1109/MCG.2017.3621219
  • Andrienko, N., & Andrienko, G. (2005). Exploratory analysis of spatial and temporal data: A systematic approach. Berlin: Springer.
  • Andrienko, N., Andrienko, G., Fuchs, G., & Jankowski, P. (2016). Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Information Visualization, 15(2), 117–153. doi:10.1177/1473871615581216
  • Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21.
  • Becker, R. A., Cleveland, W. S., & Shyu, M.-J. (1996). The visual design and control of trellis display. Journal of Computational and Graphical Statistics, 5(2), 123–155. doi:10.1080/10618600.1996.10474701
  • Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., & Fekete, J. D. (2016). Matrix reordering methods for table and network visualization. Computer Graphics Forum, 35(3), 693–716. doi:10.1111/cgf.12935
  • Bernstein, W. Z., Ramanujan, D., Kulkarni, D. M., Tew, J., Elmqvist, N., Zhao, F., & Ramani, K. (2015). Mutually coordinated visualization of product and supply chain metadata for sustainable design. Journal of Mechanical Design, 137(12), 121101–121110. doi:10.1115/1.4031293
  • Bertin, J. (1983). Semiology of graphics: Diagrams, networks, maps (W. Berg, Trans.) (translation from French 1967 edition) Madison, WI: University of Wisconsin Press.
  • Bezerianos, A., & Isenberg, P. (2012). Perception of visual variables on tiled wall-sized displays for information visualization applications. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2516–2525. doi:10.1109/TVCG.2012.251
  • Borgo, R., Lee, B., Bach, B., Fabrikant, S., Jianu, R., Kerren, A., … Von Landesberger, T. (2017). Crowdsourcing for information visualization: promises and pitfalls. In D. Archambault, H. Purchase, & T. Hossfeld (Eds.), Evaluation in the Crowd: Crowdsourcing and human-centered experiments (pp. 96–138). Cham, Switzerland: Springer. doi:10.1007/978-3-319-66435-4_5
  • Börner, K., & Polley, D. E. (2014). Visual insights: A practical guide to making sense of data. Cambridge, MA: MIT Press.
  • Bostock, M., & Heer, J. (2009). Protovis: A Graphical Toolkit for Visualization. IEEE Transactions on Visualization & Computer Graphics, 15(6), 1121–1128. doi:10.1109/TVCG.2009.174
  • Brasseur, L. E. (2017). Florence Nightingale’s statistical table for hospitals: A work of utility and art. In C. Kostelnick (Ed.), Visible numbers: Essays on the history of statistical graphics (pp. 43–60). New York: Routledge.
  • Brath, R., & Banissi, E. (2015, February 8–12). Evaluating lossiness and fidelity in information visualization. In D. L. Kao, M. C. Hao, M. A. Livingston & T. Wischgoll (Eds.) Proceedings, Visualization and Data Analysis 2015 (Vol. 93970H, pp. 14). Bellingham, WA: SPIE. doi:10.1117/12.2083444
  • Brehmer, M., & Munzner, T. (2013). A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2376–2385. doi:10.1109/TVCG.2013.124
  • Brügger, A., Fabrikant, S. I., & Çöltekin, A. (2017). An empirical evaluation of three elevation change symbolization methods along routes in bicycle maps. Cartography and Geographic Information Science, 44(5), 436–451. doi:10.1080/15230406.2016.1193766
  • Brunet, R. (1987). La carte, mode d’emploi. Paris: Fayard-Reclus.
  • Brychtová, A., & Coltekin, A. (2015). Discriminating classes of sequential and qualitative colour schemes. International Journal of Cartography, 1(1), 62–78. doi:10.1080/23729333.2015.1055643
  • Brychtová, A., & Çöltekin, A. (2017). The effect of spatial distance on the discriminability of colors in maps. Cartography and Geographic Information Science, 44(3), 229–245. doi:10.1080/15230406.2016.1140074
  • Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. Oxford: Clarendon.
  • Byrne, L., Angus, D., & Wiles, J. (2016). Acquired codes of meaning in data visualization and infographics: Beyond perceptual primitives. IEEE Transactions on Visualization and Computer Graphics, 22(1), 509–518. doi:10.1109/TVCG.2015.2467321
  • Byrne, L., Angus, D., & Wiles, J. (2017). Figurative frames: A critical vocabulary for images in information visualization. Information Visualization. doi:10.1177/1473871617724212
  • Byron, L., & Wattenberg, M. (2008). Stacked graphs – Geometry & Aesthetics. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1245–1252. doi:10.1109/TVCG.2008.166
  • Card, S. K., & Mackinlay, J. (1997). The Structure of the Information Visualization Design Space In J. Dill & N. Gershon (Eds.) Proceedings, IEEE Information Visualization ‘97 (pp. 92–99). New York: IEEE. doi:10.1109/INFVIS.1997.636792
  • Card, S. K., Mackinlay, J. D., & Shneiderman, B. (Eds.). (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann
  • Carpendale, M. S. T. (2003). Considering visual variables as a basis for information visualisation. Calgary, AB: Department of Computer Science (Report). doi:10.5072/PRISM/30495
  • Chang, C., Bach, B., Dwyer, T., & Marriott, K. (2017). Evaluating perceptually complementary views for network exploration tasks. In G. Mark & S. Fussell (Eds.) Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 1397–1407). New York: ACM. doi:10.1145/3025453.3026024
  • Chiera, B. A., & Korolkiewicz, M. W. (2017a). Teaching visualisation in the age of big data: Adopting old approaches to address new challenges. In T. Prodromou (Ed.), Data visualization and statistical literacy for open and big data (pp. 103–125). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-2512-7.ch005
  • Chiera, B. A., & Korolkiewicz, M. W. (2017b). Visualizing big data: Everything old is new again. In F. P. G. Márquez & B. Lev (Eds.), Big data management (pp. 1–27). Cham, Switzerland: Springer. doi:10.1007/978-3-319-45498-6_1
  • Chuang, J., Manning, C. D., & Heer, J. (2012). Termite: Visualization techniques for assessing textual topic models. In G. Tortora, S. Levialdi, & M. Tucci (Eds.), Proceedings of the international working conference on advanced visual interfaces (pp. 74–77). New York: ACM. doi:10.1145/2254556.2254572
  • Chung, D. H., Archambault, D., Borgo, R., Edwards, D. J., Laramee, R. S., & Chen, M. (2016). How ordered is it? On the perceptual orderability of visual channels. Computer Graphics Forum, 35(3), 131–140. doi:10.1111/cgf.12889
  • Cleveland, W. (1993). Visualizing data. Summit, NJ: Hobart Press.
  • Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
  • Cressie, N. (1991). Statistics for spatial data. New York: Wiley.
  • Da Silva, G., Medina, C., Rodrigues, B. F., Da Silva, M., Hitoshi Kawakami, W., & Rocha, M. M. N. (2016). A fast feature vector approach for revealing simplex and equi-correlation data patterns in reorderable matrices. Information Visualization, 16(4), 261–274. doi:10.1177/1473871616666392
  • Dasgupta, A., Burrows, S., Han, K., & Rasch, P. J. (2017). Empirical analysis of the subjective impressions and objective measures of domain scientists’ visual analytic judgments. In G. Mark & S. Fussell (Eds.) Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. New York: ACM. doi:10.1145/3025453.3025882
  • Davies, C., Fabrikant, S. I., & Hegarty, M. (2017). Toward empirically verified cartographic displays. In R. R. Hoffman. A. Hancock, M. W. Scerbo, R. Parasuraman, & J. L. Szalma (Eds.), Cambridge Handbook of Applied Perception Research (Chapter 35, pp. 711–729). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511973017.043
  • Degenne, A., & Forsé, M. (1999). Introducing social networks. London: Sage.
  • Demiralp, Ç., Bernstein, M. S., & Heer, J. (2014). Learning perceptual kernels for visualization design. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1933–1942. doi:10.1109/TVCG.2014.2346978
  • DiBiase, D., MacEachren, A. M., Krygier, J. B., & Reeves, C. (1992). Animation and the role of map design in scientific visualization. Cartography and Geographic Information Systems, 19(4), 201–214. doi:10.1559/152304092783721295
  • Epp, C. D., & Bull, S. (2015). Uncertainty representation in visualizations of learning analytics for learners: current approaches and opportunities. IEEE Transactions on Learning Technologies, 8(3), 242–260. doi:10.1109/TLT.2015.2411604
  • Fayyad, U. M., Wierse, A., & Grinstein, G. G. (2002). Information visualization in data mining and knowledge discovery. San Francisco: Morgan Kaufmann.
  • Feugnet, A., Filet, C., & Rossi, F. (2017). Co-presence analysis and economic patterns: Mediterranean imports in the celtic world. Frontiers in Digital Humanities, 4, p online. doi:10.3389/fdigh.2017.00001
  • Fish, C. S., & Calvert, K. (2017). Analysis of interactive solar energy web maps for urban energy sustainability. Cartographic Perspectives, 85. Retreived from http://www.cartographicperspectives.org/index.php/journal/article/view/cp85-fish-calvert/1515.
  • Friendly, M. (2000). Visualizing categorical data. Cary, NC: SAS Institute.
  • Gansner, E. R., & North, S. C. (2000). An open graph visualization system and its applications to software engineering. Software-Practice & Experience, 30(11), 1203–1233. doi:10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
  • Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive visualization of large data sets. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2142–2157. doi:10.1109/TKDE.2016.2557324
  • Griffin, A. (2002). Feeling it out: The use of haptic visualization for exploratory geographic analysis. Cartographic Perspectives, 39, 12–29. doi:10.14714/CP39.636
  • Grolemund, G., & Wickham, H. (2015). Visualizing complex data with embedded plots. Journal of Computational and Graphical Statistics, 24(1), 26–43. doi:10.1080/10618600.2014.896808
  • Gürdür, D., El-Khoury, J., Seceleanu, T., & Lednicki, L. (2016). Making interoperability visible: Data visualization of cyber-physical systems development tool chains. Journal of Industrial Information Integration, 4, 26–34. doi:10.1016/j.jii.2016.09.002
  • Hall, K. W., Perin, C., Kusalik, P. G., Gutwin, C., & Carpendale, S. (2016). Formalizing emphasis in information visualization. Computer Graphics Forum. 35(3), 717–737. doi:10.1111/cgf.12936
  • Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Waltham, MA: Morgan Kaufmann.
  • Harvey, F. (2017). Improving GIScience visualization: Ideas for a new methodology. In C. Zhou, F. Su, F. Harvey, & J. Xu (Eds.), Spatial data handling in big data era: Select papers from the 17th IGU spatial data handling symposium 2016 (pp. 127–137). Singapore: Springer. doi:10.1007/978-981-10-4424-3_9
  • Hearst, M. A., Laskowski, P., & Silva, L. (2016). Evaluating information visualization via the interplay of heuristic evaluation and question-based scoring. In J. Kaye & K. Druin (Eds.), Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 5028–5033). New York: ACM. doi:10.1145/2858036.2858280
  • Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.
  • Isenberg, P., Dragicevic, P., Willett, W., Bezerianos, A., & Fekete, J. D. (2013). Hybrid-Image Visualization for Large Viewing Environments. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2346–2355. doi:10.1109/TVCG.2013.163
  • Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis. Hoboken, NJ: Wiley.
  • Krygier, J. (1994). Sound and geographic visualization. In A. M. MacEachren & D. R. F. Taylor (Eds.), Visualization in Modern Cartography (pp. 149–166). Oxford, UK: Pergamon.
  • Kubíček, P., Šašinka, Č., Stachoň, Z., Štěrba, Z., Apeltauer, J., & Urbánek, T. (2017). Cartographic design and usability of visual variables for linear features. The Cartographic Journal, 54(1), 91–102. doi:10.1080/00087041.2016.1168141
  • Kwan, M.-P. (2016). Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Annals of the American Association of Geographers, 106(2), 274–282. doi:10.1080/00045608.2015.1117937
  • Lee, S., Kim, S.-H., & Kwon, B. C. (2017). VLAT: Development of a visualization literacy assessment test. IEEE Transactions on Visualization and Computer Graphics, 23(1), 551–560. doi:10.1109/TVCG.2016.2598920
  • Luyten, K., Degraen, D., Ruiz, G. R., Coppers, S., & Vanacken, D. (2016). Hidden in plain sight: An exploration of a visual language for near-eye out-of-focus displays in the peripheral view In J. Kaye & A. Druin (Eds.), Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 487–497). New York ACM. doi:10.1590/1678-775720160014
  • MacEachren, A. M. (1995). How maps work: representation, visualization and design. New York: Guilford Press.
  • MacEachren, A. M. (2017). Leveraging big (geo) data with (geo)visual analytics: Place as the next frontier. In C. Zhou, F. Su, F. Harvey, & J. Xu (Eds.), Spatial data handling in big data era: Select papers from the 17th IGU spatial data handling symposium 2016 (pp. 139–155). Singapore: Springer. doi:10.1007/978-981-10-4424-3_10
  • Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Transactions on Graphics, 5(2), 110–141. doi:10.1145/22949.22950
  • Martinuci, O. D. S. (2016). Geography, graphical semiology and corematic. Mercator (Fortaleza), 15(3), 37–52. doi:10.4215/RM2016.1503.0003
  • McNamara, A. (2016). Key attributes of a modern statistical computing tool. arXiv Preprint arXiv, 1610.00985.
  • Mellado, N., Vanderhaeghe, D., Hoarau, C., Christophe, S., Brédif, M., & Barthe, L. (2017). Constrained palette-space exploration. ACM Transactions on Graphics, 36(4), 1–14. doi:10.1145/3072959.3073650
  • Méndez, G. G., Hinrichs, U., & Nacenta, M. A. (2017). Bottom-up vs. Top-down: Trade-offs in efficiency, understanding, freedom and creativity with infovis tools. In C. Lampe, M. C. Schraefel, J. P. Hourcade, C. Appert, & D. Wigdor (Eds.), Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 841–852). New York: ACM. doi:10.1145/3025453.3025942
  • Morrison, J. L. (1974). A theoretical framework for cartographic generalization with the emphasis on the process of symbolization. International Yearbook of Cartography, 14, 115–127.
  • Munzner, T. (2014). Visualization analysis and design. Boca Raton, FL: CRC press.
  • Mutlu, B., Veas, E., & Trattner, C. (2016). VizRec: Recommending personalized visualizations. ACM Transactions on Interactive Intelligent Systems, 6(4), 31. doi:10.1145/2983923
  • Nazemi, K. (2016). Adaptive semantics visualization. Cham, Switzerland: Springer.
  • Norman, D. A. (1993). Things that make us smart: Defending human attributes in the age of the machine. Boston, MA: Addison-Wesley
  • Patuzzo, E. (2017). Diagrams as heuristic tools. A semiotic investigation to provide a theoretical model for the design of diagrams. In A. Luigini, D. Basso, S. Brusaporci, E. Cicalò, M. M. Moretti, M. Turco, … D. Villa (Eds.), Proceedings of the international and interdisciplinary conference IMMAGINI? Image and imagination between representation, communication, education and psychology (Vol. 1, pp. 958). Basel, Switzerland: MDPI. doi:10.3390/proceedings1090958
  • Perin, C., Dragicevic, P., & Fekete, J.-D. (2014). Revisiting Bertin matrices: New interactions for crafting tabular visualizations. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2082–2091. doi:10.1109/TVCG.2014.2346279
  • Perin, C., Fekete, J.-D., & Dragicevic, P. (2018). Jacques Bertin’s legacy in information visualization and the reorderable matrix. Cartography and Geographic Information Science. doi:10.1080/15230406.2018.1470942
  • Perin, C., Le Goc, M., Di Vozzo, R., Fekete, J.-D., & Dragicevic, P. (2015). DIY Bertin matrix. Proceedings of the CHI Workshop on Exploring the Challenges of Making Data Physical. Seoul, South Korea: ACM.
  • Perin, C., Wun, T., Pusch, R., & Carpendale, S. (2018). Assessing the graphical perception of time and speed on 2D+time trajectories. IEEE Transactions on Visualization and Computer Graphics, 24(1), 698–708. doi:10.1109/TVCG.2017.2743918
  • Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134–148. doi:10.2307/3151680
  • Rautenbach, V., Coetzee, S., Schiewe, J., & Çöltekin, A. (2015). An assessment of visual variables for the cartographic design of 3D informal settlement models Proceedings of the 27th International Cartographic Conference, Rio de Janeiro, Brazil (pp. 23–28). Rio de Janeiro, Brazil: International Cartographic Association. doi:10.3389/fphar.2015.00023
  • Riche, N. H., Lee, B., & Plaisant, C. (2010). Understanding interactive legends: A comparative evaluation with standard widgets. Computer Graphics Forum, 29(3), 1193–1202. doi:10.1111/j.1467-8659.2009.01678.x
  • Robertson, G., Czerwinski, M., Fisher, D., & Lee, B. (2009). Selected human factors issues in information visualization. Reviews of Human Factors and Ergonomics, 5(1), 41–81. doi:10.1518/155723409X448017
  • Robinson, A. (2017). Geovisual analytics. In J. P. Wilson Ed., The geographic information science & technology body of knowledge 3rd Quarter 2017. Ithaca, NY: UCGIS. doi:10.22224/gistbok/2017.3.6
  • Robinson, A. C., Demšar, U., Moore, A. B., Buckley, A., Jiang, B., Field, K., … Sluter, C. R. (2017). Geospatial big data and cartography: Research challenges and opportunities for making maps that matter. International Journal of Cartography, 3(S1), 1–29. doi:10.1080/23729333.2016.1278151
  • Robinson, A. H. (1953). Elements of cartography (1st ed.). New York: Wiley.
  • Roth, R. E. (2013). An empirically-derived taxonomy of interaction primitives for interactive cartography and geovisualization. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2356–2365. doi:10.1109/TVCG.2013.130
  • Saket, B., Srinivasan, A., Ragan, E. D., & Endert, A. (2018). Evaluating Interactive Graphical Encodings for Data Visualization. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1316–1330. doi:10.1109/TVCG.2017.2680452
  • Salim, F., & Haque, U. (2015). Urban computing in the wild: A survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things. International Journal of Human-Computer Studies, 81, 31–48. doi:10.1016/j.ijhcs.2015.03.003
  • Santos, M. (2002). A natureza do espaço: Técnica e tempo, razão e emoção. São Paulo, Brazil: Edusp - Editora da Universidade de São Paulo.
  • Sedig, K., & Parsons, P. (2016). Design of visualizations for human-information interaction: A pattern-based framework. Synthesis Lectures on Visualization, 4(1), 1–185. doi:10.2200/S00685ED1V01Y201512VIS005
  • Shneiderman, B. (1987). Designing the user interface. Reading, MA: Addison-Wesley.
  • Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualization. In IEEE Symposium on in Visual Languages ‘96 (pp. 336–343). Los Alamitos, CA, : IEEE. doi:10.1109/VL.1996.545307
  • Stjernfelt, F. (2000). Diagrams as centerpiece of a Peircean epistemology. Transactions of the Charles S Peirce Society, 36(3), 357–384. https://www.jstor.org/stable/40320800
  • Talbot, J., Lee, B., Kapoor, A., & Tan, D. S. (2009). EnsembleMatrix: Interactive visualization to support machine learning with multiple classifiers. In D. Olson & R. Arthur (Eds.), Proceedings of the 27th international conference on Human factors in computing systems. New York: ACM. doi:10.1145/1518701.1518895
  • Thomas, J. J., & Cook, K. A. (Eds.). (2005). Illuminating the path: The research and development agenda for visual analytics. Los Alamitos, CA: IEEE Computer Society.
  • Tobler, W. R. (1979). A transformational view of cartography. American Cartographer, 6, 101–106. doi:10.1559/152304079784023104
  • Tominski, C., Aigner, W., Miksch, S., & Schumann, H. (2017). Chapter 2: Images of time. In P. L. A. Black, O. Lund, & S. Walker (Eds.), Information design: Research and practice (pp. 23–42). London: Routledge.
  • Tranquille, D., Stapleton, G., Burton, J., & Rodgers, P. (2016). Evaluating the effects of colour in lineSets. In M. Jamnik, Y. Uesaka, & S. Elzer Schwartz (Eds.), Diagrammatic representation and inference. Diagrams 2016. Lecture notes in computer science, vol 9781 (pp. 283–285). Cham, Switzerland: Springer. doi:10.1007/978-3-319-42333-3_24
  • Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.
  • Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.
  • Tufte, E. R. (1997). Visual explanations. Cheshire, CT: Graphics Press..
  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
  • Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36, 189–195. doi:10.1016/j.patrec.2013.07.003
  • Turkay, C., Slingsby, A., Lahtinen, K., Butt, S., & Dykes, J. (2017). Supporting theoretically-grounded model building in the social sciences through interactive visualisation. Neurocomputing, 268, 153–163. doi:10.1016/j.neucom.2016.11.087
  • Van Long, T., & Linsen, L. (2016). Efficient reordering of parallel coordinates and its application to multidimensional biological data visualization. In L. Linsen, B. Hamann, & H.-C. Hege (Eds.), Visualization in medicine and life sciences III (pp. 309–328). Cham, Switzerland: Springer. doi:10.1007/978-3-319-24523-2_14
  • Voigt, M., Franke, M., & Meißner, K. (2013). Capturing and reusing empirical visualization knowledge. UMAP Workshops.
  • von Engelhardt, Y. (2002). The language of graphics: A framework for the analysis of syntax and meaning in maps, charts and diagrams (Ph.D. Dissertation). University of Amsterdam, Amsterdam. doi:10.1044/1059-0889(2002/er01)
  • Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21(1), 14–23. doi:10.3102/0013189X021001014
  • Walny, J., Huron, S., & Carpendale, S. (2015). An exploratory study of data sketching for visual representation. Computer Graphics Forum, 34(3), 231–240. doi:10.1111/cgf.12635
  • Walny, J., Huron, S., Perin, C., Wun, T., Pusch, R., & Carpendale, S. (2018). Active reading of visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1), 770–780. doi:10.1109/TVCG.2017.2745958
  • Ware, C. (2004). Information visualization: Perception for design (2nd ed.). San Francisco: Morgan Kaufmann.
  • Ware, C. (2012). Information visualization: Perception for design, 3rd Edition. Waltham, MA: Morgan Kaufmann.
  • Wattenberg, M., & Fisher, D. (2004). Analyzing perceptual organization in information graphics. Information Visualization, 3(2), 123–133. doi:10.1057/palgrave.ivs.9500070
  • Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2016). Engineering psychology & human performance, 4th Edition. New York: Routledge.
  • Wickham, H. (2010). A layered grammar of graphics. Journal of Computational and Graphical Statistics, 19(1), 3–28. doi:10.1198/jcgs.2009.07098
  • Wickham, H. (2013). Statistical graphics. In A. H. El‐Shaarawi, W. W. Piegorsch, & H. H. Zhang (Eds.), Encyclopedia of environmetrics. Wiley Online Library. doi:10.1002/9780470057339.vnn164
  • Wilkinson, L. (1999). The grammar of graphics. New York: Springer.
  • Wolodtschenko, A. (2017). Quo vadis classic cartosemiotics & quo vadis theoretical cartography? Meta-Carto-Semiotics, 4(1), 26–43.
  • Wolodtschenko, A., & Schlichtmann, H. (2017). Diskussionsbeiträge zur kartosemiotik und zur theorie Der kartographie. Meta-Carto-Semiotics, 6(1).
  • Yi, J. S., Kang, Y., Stasko, J., & Jacko, J. (2007). Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1224–1231. doi:10.1109/TVCG.2007.70515
  • Zhao, L., Chen, L., Ranjan, R., Choo, -K.-K. R., & He, J. (2016). Geographical information system parallelization for spatial big data processing: A review. Cluster Computing, 19(1), 139–152. doi:10.1007/s10586-015-0512-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.