294
Views
6
CrossRef citations to date
0
Altmetric
Articles

Validating the use of object-based image analysis to map commonly recognized landform features in the United States

ORCID Icon & ORCID Icon
Pages 441-455 | Received 29 May 2018, Accepted 18 Sep 2018, Published online: 07 Nov 2018

References

  • Agresti, A. (2007). An introduction to categorical data analysis. Hoboken, NJ: Wiley.
  • Anders, N. S., Seijmonsbergen, A. C., & Bouten, W. (2009). Multi-scale and object-oriented image analysis of high-res LiDAR data for geomorphological mapping in alpine mountains. In R. Purves, S. Gruber, T. Hengl, & R. Straumann (Eds.), Proceedings of geomophometry 2009 (pp. 61–65). Zürich: University of Zurich.
  • Argyridis, A., & Argialas, D. P. (2015). A fuzzy spatial reasoner for multi-scale geobia ontologies. Photogrammetric Engineering and Remote Sensing, 81, 491–498. doi:10.14358/PERS.81.6.491
  • Arundel, S. T. (2016). Pairing semantics and object-based image analysis for national terrain mapping - a first-case scenario of cirques. In N. Kerle, M. Gerke, & S. Lefevre (Eds.), GEOBIA 2016: Solutions and synergies. Enschede: Netherlands. Retrieved from http://proceedings.utwente.nl/765431/1/Arundel-PairingSemanticsandObject-basedImageAnalysis-13.pdf
  • Bennett, D. A., & Armstrong, M. P. (1996). An inductive knowledge-based approach to terrain feature extraction. Cartography and Geographic Information Systems, 23, 3–19. doi:10.1559/152304096782512177
  • Burrough, P. A., van Gaans, P. F. M., & MacMillan, R. A. (2000). High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems, 113, 37–52. doi:10.1016/S0165-0114(99)00011-1
  • Chang, Y.-C., & Sinha, G. (2007). A visual basic program for ridge axis picking on DEM data using the profile-recognition and polygon-breaking algorithm. Computers & Geosciences, 33, 229–237. doi:10.1016/j.cageo.2006.06.007
  • Chaudhry, O. Z., & Mackaness, W. A. (2008). Creating mountains out of mole hills: Automatic identification of hills and ranges using morphometric analysis. Transactions in GIS, 12, 567–589. doi:10.1111/j.1467-9671.2008.01116.x
  • Clark, C. D., Hughes, A. L., Greenwood, S. L., Spagnolo, M., & Ng, F. S. (2009). Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws. Quaternary Science Reviews, 28, 677–692. doi:10.1016/j.quascirev.2008.08.035
  • Clarke, K. C., & Archer, R. (2009). Terrain feature extraction from variable resolution digital elevation models. In Proceedings of 24th International Cartographic Conference, Santiago, Chile. Retrieved from https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/nonref/9_1.pdf
  • Cronin, T. (2000). Classifying hills and valleys in digitized terrain. Photogrammetric Engineering & Remote Sensing, 66, 1129–1137. https://www.asprs.org/wp-content/uploads/pers/2000journal/september/2000_sept_1129-1137.pdf
  • d’Oleire-Oltmanns, S., Eisank, C., Drǎguţ, L., & Blaschke, T. (2013). An object-based workflow to extract landforms at multiple scales from two distinct data types. IEEE Geoscience and Remote Sensing Letters, 10, 947–951. doi:10.1109/LGRS.2013.2254465
  • Deng, Y., & Wilson, J. P. (2008). Multi-scale and multi-criteria mapping of mountain peaks as fuzzy entities. International Journal of Geographical Information Science, 22, 205–218. doi:10.1080/13658810701405623
  • Dinesh, S. (2009). Analysis of landform Metrics of mountains extracted from multiscale digital elevation models. Australian Journal of Basic and Applied Sciences, 3, 3997–4010.
  • Dowling, T. P. F., Spagnolo, M., & Möller, P. (2015). Morphometry and core type of streamlined bedforms in southern Sweden from high resolution LiDAR. Geomorphology, 236, 54–63. doi:10.1016/j.geomorph.2015.02.018
  • Drǎguţ, L., & Eisank, C. (2012). Automated object-based classification of topography from SRTM data. Geomorphology, 141–142, 21–33. doi:10.1016/j.geomorph.2011.12.001
  • Drǎguţ, L., Tiede, D., & Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24, 859–871. doi:10.1080/13658810903174803
  • Ehsani, A. H., & Quiel, F. (2008). Geomorphometric feature analysis using morphometric parameterization and artificial neural networks. Geomorphology, 99, 1–12. doi:10.1016/j.geomorph.2007.10.002
  • Eisank, C. (2010). A hierarchical system for multi-scale and object-based landform classification. In J. Wallgrun & A.-K. Lautenschutz (Eds.), Proceedings of the GIScience 2010 Doctoral Colloquium (pp. 17–22). Zürich: ifgiPrints.
  • Eisank, C., Drăguţ, L., Gotz, J., & Blaschke, T. (2010). Developing a semantic model of glacial landforms for object-based terrain classification–The example of glacial cirques. In E. A. Addink & F. M. B. Van Coillie (Eds.), GEOBIA 2010: Geographic object-based image analysis International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7. Ghent, Belgium: ISPRS. http://www.isprs.org/proceedings/XXXVIII/4-C7/pdf/Eisank_140.pdf.
  • Esri. (2018). World_Terrain_Base (MapServer) ArcGIS Online web-map service. Retrieved from https://services.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer
  • Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137, 94–106. doi:10.1016/j.geomorph.2010.09.029
  • Fenneman, N. M., & Johnson, D. W. (1946). Physical divisions of the United States. Scale 1:7,000,000. Washington, DC: United States Geological Survey.
  • Fisher, P., Wood, J., & Cheng, T. (2004). Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers, 29, 106–128. doi:10.1111/j.0020-2754.2004.00117.x
  • Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39, 1347. doi:10.1029/2002WR001426
  • Gerçek, D., Toprak, V., & Strobl, J. (2011). Object-based classification of landforms based on their local geometry and geomorphometric context. International Journal of Geographical Information Science, 25, 1011–1023. doi:10.1080/13658816.2011.558845
  • Graff, L. H., & Usery, E. L. (1993). Automated classification of generic terrain features in digital elevation models. Photogrammetric Engineering and Remote Sensing, 59, 1409–1417.
  • Hammond, E. H. (1954). Small-scale continental landform maps. Annals of the Association of American Geographers, 44, 33–42. doi:10.1080/00045605409352120
  • Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86, 409–440. doi:10.1016/j.geomorph.2006.09.012
  • Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons-a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. doi:10.1016/j.geomorph.2012.11.005
  • Jorge, M. G., & Brennand, T. A. (2017). Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models – Two new methods. Geomorphology, 288, 148–163. doi:10.1016/j.geomorph.2017.04.001
  • Li, W., Goodchild, M. F., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 27, 1227–1250. doi:10.1080/13658816.2012.752093
  • Li, W., Zhou, B., Hsu, C., Li, Y., & Fengbo, R. (2017). Recognizing terrain features on terrestrial surface using a deep learning model - an example with crater detection. In H. Mao, Y. Hu, & B. Kar (Eds.), First ACM SIGSPATIAL workshop on artificial intelligence and deep learning for geographic knowledge discovery (pp. 33–36). New York: ACM. doi:10.1145/3149808.3149814
  • Liu, D., & Xia, F. (2010). Assessing object-based classification: Advantages and limitations. Remote Sensing Letters, 1, 187–194. doi:10.1080/01431161003743173
  • MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., & Goddard, T. W. (2000). A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113, 81–109. doi:10.1016/S0165-0114(99)00014-7
  • Miliaresis, C. G., & Argialas, P. D. (1999). Segmentation of phisiographic features from the global digital elevation model/GTOPO30. Computers & Geosciences, 25, 715–728. doi:10.1016/S0098-3004(99)00025-4
  • Miliaresis, G. (2006). Geomorphometric mapping of Asia minor from GLOBE digital elevation model. Geografiska Annaler A, 88, 209–221. doi:10.1111/j.1468-0459.2006.00296.x
  • Podobnikar, T. (2012). Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sensing, 4, 784–809. doi:10.3390/rs4030784
  • Robb, C., Willis, I., Arnold, N., & Guðmundsson, S. (2015). A semi-automated method for mapping glacial geomorphology tested at Breiðamerkurjökull, Iceland. Remote Sensing of Environment, 163, 80–90. doi:10.1016/j.rse.2015.03.007
  • Saha, K., Wells, N. A., & Munro-Stasiuk, M. (2011). An object-oriented approach to automated landform mapping: A case study of drumlins. Computers and Geosciences, 37, 1324–1336. doi:10.1016/j.cageo.2011.04.001
  • Schneider, M., & Klein, R. (2010). Semi-automatic digital landform mapping. In J.-C. Otto & R. Dikau (Eds.), Landform - Structure, evolution, process control [Lecture notes in earth sciences 115] (pp. 37–51). Berlin: Springer. doi:10.1007/978-3-540-75761-0_3
  • Sharpe, D. (2015). Your Chi-Square test is statistically significant: Now what? Practical Assessment, Research & Evaluation, 208, Retrieved from http://pareonline.net/getvn.asp?v=20&n=8
  • Sinha, G. (2008). Delineation, characterization, and classification of topographic eminences. Unpublished PhD dissertation. University at Buffalo, Buffalo, NY.
  • Sinha, G., & Mark, D. M. (2010). Cognition-based extraction and modelling of topographic eminences. Cartographica: The International Journal for Geographic Information and Geovisualization, 45, 105–112. doi:10.3138/carto.45.2.105
  • Smith, M. J. (2011). Digital mapping: Visualisation, interpretation and quantification of landforms. In M. J. Smith, J. Griffiths, & P. Paron (Eds.), Geomorphological mapping: Methods and applications, developments in earth surface processes 15 (pp. 225–251). London: Elsevier. doi:10.1016/B978-0-444-53446-0.00008-2
  • Smith, M. J., & Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes and Landforms, 30, 885–900. doi:10.1002/esp.1210
  • Smith, M. J., Rose, J., & Gousie, M. B. (2009). The cookie cutter: A method for obtaining a quantitative 3D description of glacial bedforms. Geomorphology, 108, 209–218. doi:10.1016/j.geomorph.2009.01.006
  • Spagnolo, M., Clark, C. D., Hughes, A. L., & Dunlop, P. (2011). The topography of drumlins; assessing their long profile shape. Earth Surface Processes and Landforms, 36, 790–804. doi:10.1002/esp.2107
  • Stokes, C. R., Spagnolo, M., Clark, C. D., Ócofaigh, C., Lian, O. B., & Dunstone, R. B. (2013). Formation of mega-scale glacial lineations on the Dubawnt Lake Ice Stream bed: Size, shape and spacing from a large remote sensing dataset. Quaternary Science Reviews, 77, 190–209. doi:10.1016/j.quascirev.2013.06.003
  • Straumann, R. K., & Purves, R. S. (2008). Delineation of valleys and valley floors. In T. J. Cova, H. J. Miller, K. Beard, A. U. Frank, & M. F. Goodchild (Eds.), Geographic information science. GIScience 2008. Lecture notes in computer science (Vol. 5266, pp. 320–336). Berlin: Springer. doi:10.1007/978-3-540-87473-7_21
  • Straumann, R. K., & Purves, R. S. (2011). Computation and elicitation of valleyness. Spatial Cognition and Computation, 11, 178–204. doi:10.1080/13875868.2010.537797
  • Trimble. (2018). Trimble® eCognition® Developer, Version 9. Retrieved from http://www.ecognition.com/suite/ecognition-developer.
  • U.S. Geological Survey [USGS], (2018a, August 10). Domestic names: U.S. geological survey geographic names information system database. Retrieved from https://geonames.usgs.gov/domestic.
  • U.S. Geological Survey [USGS], (2018b, August 10). Feature class definitions: U.S. Geological survey geographic names Information system database. Retrieved from https://geonames.usgs.gov/apex/f?p=138:8.
  • U.S. Geological Survey [USGS], (2018c, August 10). US Topo—Maps for America: U.S. Geological survey, the national map website. Retrieved from https://nationalmap.gov/ustopo.
  • van Asselen, S., & Seijmonsbergen, A. C. (2006). Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78, 309–320. doi:10.1016/j.geomorph.2006.01.037
  • Vannametee, E., Babel, L. V., Hendriks, M. R., Schuur, J., de Jong, S. M., Bierkens, M. F. P., & Karssenberg, D. (2014). Semi-automated mapping of landforms using multiple point geostatistics. Geomorphology, 221, 298–319. doi:10.1016/j.geomorph.2014.05.032
  • Wood, J. (2004). A new method for the identification of peaks and summits in surface models. In M. Egenhofer, C. Freksa, & H. Miller (Eds.), Proceedings of 3rd International Conference on Geographic Information Science, GIScience, 2004, (Extended Abstracts), (pp. 227–230) Berlin: Springer. doi:10.1007/b101397
  • Wu, Q., Deng, C., & Chen, Z. (2016). Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology, 266, 1–10. doi:10.1016/j.geomorph.2016.05.006
  • Wu, Q., & Lane, C. R. (2016). Delineation and quantification of wetland depressions in the Prairie Pothole region of North Dakota. Wetlands, 36, 215–227. doi:10.1007/s13157-015-0731-6
  • Wu, Q., Liu, H., Wang, S., Yu, B., Beck, R., & Hinkel, K. (2015). A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data. International Journal of Geographical Information Science, 29, 2041–2060. doi:10.1080/13658816.2015.1038719
  • Yost, A. Y., & Carswell, W. J. J. (2009). The national map — Geographic names. USGS fact sheet (Vol. 3016). Reston, VA: U.S. Geological Survey.
  • Yu, P., Eyles, N., & Sookhan, S. (2015). Automated drumlin shape and volume estimation using high resolution LiDAR imagery (curvature based relief separation): A test from the Wadena drumlin field, Minnesota. Geomorphology, 246, 589–601. doi:10.1016/j.geomorph.2015.07.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.