611
Views
18
CrossRef citations to date
0
Altmetric
Articles

Spatial distance and cartographic background complexity in graduated point symbol map-reading task

ORCID Icon
Pages 244-260 | Received 09 Jul 2019, Accepted 04 Dec 2019, Published online: 09 Jan 2020

References

  • Alvares, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi:10.1111/j.0963-7214.2004.01502006.x
  • Andrienko, G., Andrienko, N., Burch, M., & Weiskopf, D. (2012). Visual analytics methodology for eye movement studies. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2889–2898. doi:10.1109/TVCG.2012.276
  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157–162. doi:10.1111/1467-9280.00327
  • Bertin, J. (1983). Semiology of graphics: Diagrams, networks, maps. Madison, WI: University of Wisconsin Press.
  • Brewer, C. A., & Campbell, A. J. (1998). Beyond graduated circles: Varied point symbols for representing quantitative data on maps. Cartographic Perspectives, 29, 6–25. doi:10.14714/CP29.672
  • Brychtová, A., & Çöltekin, A. (2014). An empirical user study for measuring the influence of colour distance and font size in map reading using eye tracking. Cartographic Journal, 53(3), 202–212. doi:10.1179/1743277414Y.0000000103
  • Brychtová, A., & Çöltekin, A. (2017). The effect of spatial distance on the discriminability of colors in maps. Cartography and Geographic Information Science, 44(3), 229–245. doi:10.1080/15230406.2016.1140074
  • Cassin, B., & Solomon, S. (1990). Dictionary of eye terminology. Gainesville, FL: Triad.
  • Çöltekin, A. (2006). Foveation for 3D visualization and stereo imaging (Doctoral dissertation). Retrieved from https://aaltodoc.aalto.fi/handle/123456789/2670.
  • Çöltekin, A., Fabrikant, S. I., & Lacayo, M. (2010). Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. International Journal of Geographical Information Science, 24(10), 1559–1575. doi:10.1080/13658816.2010.511718
  • Çöltekin, A., Francelet, R., Richter, K.-F., Thoresen, J., & Fabrikant, S. I. (2017). The effects of visual realism, spatial abilities, and competition on performance in map-based route learning in men. Cartography and Geographic Information Science, 45(4), 339–353. doi:10.1080/15230406.2017.1344569
  • Crawford, P. V. (1973). The perception of graduated squares as cartographic symbols. The Cartographic Journal, 10(2), 85–88. doi:10.1179/caj.1973.10.2.85
  • Cybulski, P., & Medyńska-Gulij, B. (2018). Cartographic redundancy in reducing change blindness in detecting extreme values in spatio-temporal maps. ISPRS International Journal of Geo-Information, 7(1), 8. doi:10.3390/ijgi7010008
  • Cybulski, P., & Wielebski, Ł. (2019). Effectiveness of dynamic point symbols in quantitative mapping. The Cartographic Journal, 56(2), 146–160. doi:10.1080/00087041.2018.1507183
  • Dong, W., Jiang, Y., Zheng, L., Liu, B., & Meng, L. (2018). Assessing map-reading skills using eye tracking and bayesian structural equation modelling. Sustainability, 10, 3050. doi:10.3390/su10093050
  • Donohue, R. G., Sack, C. M., & Roth, R. E. (2013). Time series proportional symbol maps with Leaflet and JQuery. Cartographic Perspectives, 76, 43–66. doi:10.14714/CP76.1248
  • Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice (2nd ed.). London: Springer.
  • Edler, D., Keil, J., Tuller, M.-C., Bestgen, A.-K., & Dickmann, F. (2018). Searching for the ‘right’ legend: The impact of legend position on legend decoding in a cartographic memory task. Cartographic Journal. published online. doi: 10.1080/00087041.2018.1533293.
  • Fairbairn, D. (2006). Measuring map complexity. The Cartographic Journal, 43(3), 224–238. doi:10.1179/000870406X169883
  • Flannery, J. J. (1971). The relative effectiveness of some common graduated point symbols in the presentation of quantitative point data. Canadian Cartographer, 8(2), 96–109. doi:10.3138/J647-1776-745H-3667
  • Garlandini, S., & Fabrikant, S. I. (2009). Evaluating effectiveness and efficiency of visual variables for geographic information visualization. In K. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Spatial information theory (pp. 195–211). Berlin: Springer. doi:10.1007/978-3-642-03832-7_12
  • Gilmartin, P. P. (1981). Influences of map context on circle perception. Annals of the Association of American Geographers, 71(2), 253–258. doi:10.1111/j.1467-8306.1981.tb01351.x
  • Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: Methods and constructs. International Journal of Industrial Ergonomics, 24, 631–645. doi:10.1016/S0169-8141(98)00068-7
  • Harrie, L., Stigmar, H., & Djordjevic, M. (2015). Analytical estimation of map readability. ISPRS International Journal of Geo-Information, 4(2), 418–446. doi:10.3390/ijgi4020418
  • Keskin, M., & Ooms, K. (2018, January 14). Possibilities of eye tracking and EEG integration for visual search on 2D maps. In P. Kiefer, I. Giannopoulus, F. Göbel, M. Raubal, & A. Duchowski (Eds.), Eye Tracking for Spatial Research, Proceedings of the 3rd International Workshop (pp. 16–21). Zurich, Switzerland: ETH Zurich. doi:10.3929/ethz-b-000222304.
  • Kiefer, P., Giannopoulos, I., Raubal, M., & Duchowski, A. (2017). Eye tracking for spatial research: Cognition, computation, challenges. Spatial Cognition & Computation, 17(1–2), 1–19. doi:10.1080/13875868.2016.1254634
  • Knol, H., Huys, R., Sarrazin, J.-C., & Jirsa, V. K. (2015). Quantifying the Ebbinghaus figure effect: Target size, context size, and target-context distance determine the presence and direction of the illusion. Frontiers in Psychology, 6, 1689. doi:10.3389/fpsyg.2015.01679
  • Krassanakis, V., & Cybulski, P. (2019). A review on eye movement analysis in map reading process: The status of the last decade. Geodesy and Cartography, 68(1), 191–209. doi:10.24425/gac.2019.126088
  • Krassanakis, V., Filippakopoulou, V., & Nakos, B. (2016). Detection of moving point symbols on cartographic backgrounds. Journal of Eye Movement Research, 9(2), 1–16. doi:10.16910/jemr.9.2.2
  • Liao, H., Wang, X., Dong, W., & Meng, L. (2019). Measuring the influence of map label density on perceived complexity: A user study using eye tracking. Cartography and Geographic Information Science, 46(3), 210–227. doi:10.1080/15230406.2018.1434016
  • MacEachren, A. M. (1982). Map complexity: Comparison and measurement. The American Cartographer, 9(1), 31–46. doi:10.1559/152304082783948286
  • Maturana, H. R., Varela, F. G., & Frenk, S. G. (1972). Size constancy and the problem of perceptual spaces. Cognition, 1(1), 91–104. doi:10.1016/0010-0277(72)90047-9
  • McCready, D. (1985). On size, distance and visual angle perception. Perception & Psychophysics, 37, 323–334. doi:10.3758/BF03211355
  • Ooms, K., Dupont, L., Lapon, L., & Popelka, S. (2015). Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental setups. Journal of Eye Movement Research, 8(1), 1–12. doi:10.16910/jemr.8.1.5
  • Ooms, K., & Krassanakis, V. (2018). Measuring the spatial noise of a low cost eye tracker to enhance fixation detection. Journal of Imaging, 4(8), 96. doi:10.3390/jimaging4080096
  • Opach, T., Korycka-Skorupa, J., Karsznia, I., Nowacki, T., Gołębiowska, I., & Rød, J. K. (2019). Visual clutter reduction in zoomable proportional point symbol maps. Cartography and Geographic Information Science, 46(4), 347–367. doi:10.1080/15230406.2018.1490202
  • Ortag, F. (2009). Variables of aesthetics in maps. In W. Cartwright, G. Gartner, & A. Lehn (Eds.), Cartography and art (pp. 123–131). Berlin: Springer.
  • Philips, R. J., & Noyes, L. (1982). An investigation of visual clutter in the topographic base of a geological map. The Cartographic Journal, 19(2), 122–132. doi:10.1179/caj.1982.19.2.122
  • Poole, A., & Ball, L. J. (2006). Eye tracking and HCI and usability research. In C. Ghaoui (Ed.), Encyclopedia of Human Computer Interaction (pp. 211–219). Hershey, PA: IGI Global. doi:10.4018/978-1-59140-562-7.ch034
  • Popelka, S., & Doležalová, J. (2016, July). Differences between 2D maps and virtual globe containing point symbols an eye-tracking study. Proceedings of the 16th International Multidisciplinary Scientific Geoconference, Albena, Bulgaria. doi:10.5593/SGEM2016/B23/S11.023.
  • Popelka, S., Stachoň, Z., Šašinka, Č., & Doležalová, J. (2016). Eyetribe tracker data accuracy evaluation and its interconnection with hypothesis software for cartographic purposes. Computational Intelligence and Neuroscience, ID, 9172506, 14. doi:10.1155/2016/9172506
  • Qin, Z., & Li, Z. (2017). Grouping rules for effective legend design. The Cartographic Journal, 54(1), 36–47. doi:10.1080/00087041.2016.1148105
  • Rensink, R., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373. doi:10.1111/j.1467-9280.1997.tb00427.x
  • Restle, F. (1970). Moon illusion explained on the basis of relative size. Science, 167(3921), 1092–1096. doi:10.1126/science.167.3921.1092
  • Roberts, B., Harris, M. G., & Yates, T. A. (2005). The roles of inducer size and distance in the Ebbinghaus illusion (Titchener circles). Perception, 34(7), 847–856. doi:10.1068/p5273
  • Robinson, A. C. (2011). Highlighting in geovisualization. Cartography and Geographic Information Science, 38(4), 373–383. doi:10.1559/15230406384373
  • Rosenholtz, R., Yauanzhen, L., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17.1–22. doi:10.1167/7.2.17
  • Schnur, S., Bektaş, K., & Çöltekin, A. (2018). Measured and perceived visual complexity: A comparative study among three online map providers. Cartography and Geographic Information Science, 45(3), 238–254. doi:10.1080/15230406.2017.1323676
  • Stachoň, Z., Šašinka, Č., Čeněk, J., Angsüsser, S., Kubiček., P., Štěrba, Z., & Bilíková, M. (2018). Effect of size, shape and map background in cartographic visualization: Experimental study on Czech and Chinese population. ISPRS International Journal of Geo-Information, 7, 427. doi:10.3390/ijgi7110427
  • Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. Journal of Vision, 11(5), 1–82. doi:10.1167/11.5.13
  • Touya, G., Hoarau, C., & Christophe, S. (2016). Clutter and map legibility in automated cartography: A research agenda. Cartographica, 51(4), 198–207. doi:10.3138/cart.51.4.3132
  • Vincent, K., Roth, R. E., Moore, S. A., Huang, Q., Lally, N., Sack, C. M., … Rosenfeld, H. (2018). Improving geographic decision making using interactive maps: An empirical study on interface and decision complexity in the North American hazardous waste trade. Environment and Planning B: Urban Analytics and City Science. doi:10.1177/2399808318764122
  • Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. doi:10.1016/j.tics.2011.02.005
  • Wielebski, Ł., & Medyńska-Gulij, B. (2019). Graphically supported evaluation of mapping techniques used in presenting spatial accessibility. Cartography and Geographic Information Science, 46(4), 311–333. doi:10.1080/15230406.2018.1479311
  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.