229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An automatic approach to generating barrier-free qualitative schemes for color vision deficiency

, , , ORCID Icon, ORCID Icon &
Pages 433-450 | Received 19 Oct 2022, Accepted 15 May 2023, Published online: 13 Jun 2023

References

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data (Report No. 964). United States Government Printing Office.
  • Anderson, C. L., & Robinson, A. C. (2022). Affective congruence in visualization design: Influences on reading categorical maps. IEEE Transactions on Visualization and Computer Graphics, 28(8), 2867–2878. https://doi.org/10.1109/TVCG.2021.3050118
  • Bláha, J. D., & Štěrba, Z. (2014). Colour contrast in cartographic works using the principles of Johannes Itten. The Cartographic Journal, 51(3), 203–213. https://doi.org/10.1179/1743277414Y.0000000084
  • Brettel, H., Viénot, F., & Mollon, J. D. (1997). Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America, 14(10), 2647–2655. https://doi.org/10.1364/JOSAA.14.002647
  • Brewer, C. A. (2016). Designing better maps: A guide for GIS users (2nd ed.). ESRI Press.
  • Brewer, C. A., Hatchard, G. W., & Harrower, M. A. (2003). ColorBrewer in print: A catalog of color schemes for maps. Cartography and Geographic Information Science, 30(1), 5–32. https://doi.org/10.1559/152304003100010929
  • Brewer, C. A., MacEachren, A. M., Pickle, L. W., & Herrmann, D. (1997). Mapping mortality: Evaluating color schemes for choropleth maps. Annals of the Association of American Geographers, 87(3), 411–438. https://doi.org/10.1111/1467-8306.00061
  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., & Tait, A. M. (2022). Dynamic world, near real-time global 10 m land use land cover mapping. Scientific Data, 9(251), 1–17. https://doi.org/10.1038/s41597-022-01307-4
  • Brychtova, A., & Coltekin, A. (2015). Discriminating classes of sequential and qualitative colour schemes. International Journal of Cartography, 1(1), 62–78. https://doi.org/10.1080/23729333.2015.1055643
  • Chen, T., Chen, M., Zhu, A. X., & Jiang, W. (2021). A learning-based approach to automatically evaluate the quality of sequential color schemes for maps. Cartography and Geographic Information Science, 48(5), 377–392. https://doi.org/10.1080/15230406.2021.1936184
  • Chen, T., Zhu, A. X., Wu, M., Chen, M., Zhang, M., Jiang, W., Lu, Y., & Wang, H. (2020). A harmony‐based approach to generating sequential color schemes for maps. Color Research & Application, 45(2), 303–314. https://doi.org/10.1002/col.22453
  • Chesneau, E. (2011). A model for the automatic improvement of colour contrasts in maps: Application to risk maps. International Journal of Geographical Information Science, 25(1), 89–111. https://doi.org/10.1080/13658811003772926
  • Christophe, S. (2011). Creative colours specification based on knowledge (COLorLegend system). The Cartographic Journal, 48(2), 138–145. https://doi.org/10.1179/1743277411Y.0000000012
  • Coltekin, A., Brychtova, A., Griffin, A. L., Robinson, A. C., Imhof, M., & Pettit, C. (2017). Perceptual complexity of soil-landscape maps: A user evaluation of color organization in legend designs using eye tracking. International Journal of Digital Earth, 10(6), 560–581. https://doi.org/10.1080/17538947.2016.1234007
  • Connolly, C., & Fleiss, T. (1997). A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Transactions on Image Processing, 6(7), 1046–1048. https://doi.org/10.1109/83.597279
  • Culp, G. M. (2012). Increasing accessibility for map readers with acquired and inherited colour vision deficiencies: A re-colouring algorithm for maps. The Cartographic Journal, 49(4), 302–311. https://doi.org/10.1179/1743277412Y.0000000030
  • Dent, B. D., Torguson, J. S., & Hodler, T. W. (2009). Cartography-thematic map design. McGraw-Hill.
  • Dong, W., Zhang, S., Liao, H., Liu, Z., Li, Z., & Yang, X. (2016). Assessing the effectiveness and efficiency of map colour for colour impairments using an eye-tracking approach. The Cartographic Journal, 53(2), 166–176. https://doi.org/10.1179/1743277413Y.0000000053
  • Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., & Schaaf, C. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1–2), 287–302. https://doi.org/10.1016/S0034-4257(02)00078-0
  • Gardner, S. D. (2005). Evaluation of the ColorBrewer color schemes for accommodation of map readers with impaired color vision [ Unpublished master’s thesis]. The Pennsylvania State University.
  • Golebiowska, L. M., & Coltekin, A. (2020). Rainbow dash: Intuitiveness, interpretability and memorability of the rainbow color scheme in visualization. IEEE Transactions on Visualization and Computer Graphics, 28(7), 2722–2733. https://doi.org/10.1109/TVCG.2020.3035823
  • Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H. P., Guo, J., Xu, N., Li, W., Zhao, Y. … Song, L. (2019). Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6), 370–373. https://doi.org/10.1016/j.scib.2019.03.002
  • Harrower, M., & Brewer, C. A. (2003). ColorBrewer.Org: An online tool for selecting colour schemes for maps. The Cartographic Journal, 40(1), 27–37. https://doi.org/10.1179/000870403235002042
  • Hobbins, D. (2020). Map design for the color vision deficient. In S. D. Brunn & R. Kehrein (Eds.), Handbook of the changing world language map (pp. 275–287). Springer.
  • Jenny, B., & Kelso, N. V. (2007). Color design for the color vision impaired. Cartographic Perspectives, (58), 61–67. https://doi.org/10.14714/CP58.270
  • Kent, A. J. (2021). When topology trumped topography: Celebrating 90 years of beck’s underground map. The Cartographic Journal, 58(1), 1–12. https://doi.org/10.1080/00087041.2021.1953765
  • Kröger, J., Schiewe, J., & Weninger, B. (2013). Analysis and improvement of the OpenStreetMap street color scheme for users with color vision deficiencies. In M. F. Buchroithner (Ed.), Proceedings of the 26th International Cartographic Conference. The International Cartographic Association.
  • Kuhn, G. R., Oliveira, M. M., & Fernandes, L. A. F. (2008). An efficient naturalness-preserving image-recoloring method for dichromats. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1747–1754. https://doi.org/10.1109/TVCG.2008.112
  • Luo, M. R., Cui, G., & Rigg, B. (2001). The development of the CIE 2000 colour‐difference formula: CIEDE2000. Color Research & Application, 26(5), 340–350. https://doi.org/10.1002/col.1049
  • Machado, M. M., & Oliveira, M. M. (2010). Real-time temporal-coherent color contrast enhancement for dichromats. Computer Graphics Forum, 29(3), 933–942. https://doi.org/10.1111/j.1467-8659.2009.01701.x
  • Machado, M. M., Oliveira, M. M., & Fernandes, L. A. F. (2009). A physiologically-based model for simulation of color vision deficiency. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1291–1298. https://doi.org/10.1109/TVCG.2009.113
  • Malacara, D. (2011). Color vision and colorimetry: Theory and applications. SPIE Press.
  • Nakauchi, S., & Onouchi, T. (2008). Detection and modification of confusing color combinations for red‐green dichromats to achieve a color universal design. Color Research & Application, 33(3), 203–211. https://doi.org/10.1002/col.20404
  • Netzel, R., Ohlhausen, B., Kurzhals, K., Woods, R., Burch, M., & Weiskopf, D. (2017). User performance and reading strategies for metro maps: An eye tracking study. Spatial Cognition & Computation, 17(1–2), 39–64. https://doi.org/10.1080/13875868.2016.1226839
  • Nollenburg, M., & Wolff, A. (2011). Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics, 17(5), 626–641. https://doi.org/10.1109/TVCG.2010.81
  • Oliveira, M. M. (2013). Towards more accessible visualizations for color-vision-deficient individuals. Computing in Science & Engineering, 15(5), 80–87. https://doi.org/10.1109/MCSE.2013.113
  • Olson, J. M., & Brewer, C. A. (1997). An evaluation of color selections to accommodate map users with color-vision impairments. Annals of the Association of American Geographers, 87(1), 103–134. https://doi.org/10.1111/0004-5608.00043
  • Ou, L., Luo, M. R., Sun, P., Hu, N., Chen, H., Guan, S., Woodcock, A., Caivano, J. L., Huertas, R., Tremeau, A., Billger, M., Izadan, H., & Richter, K. (2012). A cross-cultural comparison of colour emotion for two-colour combinations. Color Research & Application, 37(1), 23–43. https://doi.org/10.1002/col.20648
  • Padarian, J., Minasny, B., & McBratney, A. B. (2015). Using google’s cloud-based platform for digital soil mapping. Computers & Geosciences, 83, 80–88. https://doi.org/10.1016/j.cageo.2015.06.023
  • Simunovic, M. P. (2010). Colour vision deficiency. Eye, 24(5), 747–755. https://doi.org/10.1038/eye.2009.251
  • Smith, A. R. (1978). Color gamut transform pairs. ACM SIGGRAPH Computer Graphics, 12(3), 12–19. https://doi.org/10.1145/965139.807361
  • Su, H., Cai, Y., & Du, Q. (2016). Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 10(1), 309–320. https://doi.org/10.1109/JSTARS.2016.2591004
  • Viénot, F., Brettel, H., Ott, L., M’barek, A. B., & Mollon, J. D. (1995). What do colour-blind people see. Nature, 376(6536), 127–128. https://doi.org/10.1038/376127a0
  • Vlad, V., Toti, M., Dumitru, S., Simota, C., & Dumitru, M. (2021). Developing reliably distinguishable color schemes for legends of natural resource taxonomy-based maps. Cartography and Geographic Information Science, 48(5), 393–416. https://doi.org/10.1080/15230406.2021.1942218
  • Wu, M., Chen, T., Lv, G., Chen, M., Wang, H., & Sun, H. (2018a). Identification and formalization of knowledge for coloring qualitative geospatial data. Color Research & Application, 43(2), 198–208. https://doi.org/10.1002/col.22183
  • Wu, M., Chen, T., Wang, H., Lv, G., Li, H., Jin, Z., & Tao, Y. (2019). An artificial bee colony-based algorithm to automatically create colour schemes for geovisualizations. The Cartographic Journal, 56(2), 161–174. https://doi.org/10.1080/00087041.2018.1507182
  • Wu, M., Chen, T., Wang, H., Lv, G., & Zhu, A. X. (2018b). An adaptive approach to create on-demand color schemes for mapping quantitative geographic data. Color Research & Application, 43(4), 569–585. https://doi.org/10.1002/col.22212
  • Xing, H., Wu, H., Chen, Y., & Wang, K. (2021). A cooperative interference resource allocation method based on improved firefly algorithm. Defence Technology, 17(4), 1352–1360. https://doi.org/10.1016/j.dt.2020.07.006
  • Yaguchi, H., Luo, J., Kato, M., & Mizokami, Y. (2018). Computerized simulation of color appearance for anomalous trichromats using the multispectral image. Journal of the Optical Society of America, 35(4), 278–286. https://doi.org/10.1364/JOSAA.35.00B278
  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In O. Watanabe & T. Zeugmann (Eds.), Stochastic algorithms: foundations and applications (pp. 169–178). Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.