804
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beyond mapping: extend the role of cartographers to user interface designers in the Metaverse using virtual reality, augmented reality, and mixed reality

ORCID Icon &
Received 11 Aug 2022, Accepted 03 Jul 2023, Published online: 17 Oct 2023

References

  • Alexandria Digital Library Website (archived). (1998). Research & development teams. Retrieved June 20, 2023, from https://nideffer.net/proj/ADL/frames2.html
  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Rnvironments, 6(4), 355–385. https://doi.org/10.1162/pres.1997.6.4.355
  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459
  • Bobrich, J., & Otto, S. (2002). Augmented maps. The International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, 34(4), 502–505. https://www.isprs.org/proceedings/XXXIV/Part4/pdfpapers/451.pdf
  • Bolkas, D., Chiampi, J., Chapman, J., & Pavill, V. (2020). Creating a virtual reality environment with a fusion of sUAS and TLS point-clouds. International Journal of Image and Data Fusion, 11(2), 136–161. https://doi.org/10.1080/19479832.2020.1716861
  • Buttenfield, B. P. (1995). Evaluating user requirements for a digital library testbed. In Proceeding of AUTO-CARTO 12 Conference (pp. 207–214). The American Society for Photogrammetry and Remote Sensing and the American Congress on Surveying and Mapping.
  • Buttenfield, B. P. (1998). Looking forward: Geographic information services and libraries in the future. Cartography and Geographic Information Systems, 25(3), 161–171. https://doi.org/10.1559/152304098782383124
  • Buttenfield, B. P. (1999). Usability evaluation of digital libraries. Science & Technology Libraries, 17(3–4), 39–59. https://doi.org/10.1300/J122v17n03_04
  • Buttenfield, B. P., & Goodchild, M. F. (1996, November). The Alexandria digital library project: Distributed library services for spatially referenced data. In Proceedings of GIS/LIS’96 International Conference (pp. 76–84). American Society for Photogrammetry and Remote Sensing.
  • Buttenfield, B. P., & Kumler, M. P. (1996, January 21–26) Tools for browsing environmental data: The Alexandria digital library interface. In Proceedings, Third International Conference on Integrating Geographic Information Systems and Environmental Modeling. Retrieved June 20, 2023, from http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/buttenfield_babs/babs_paper.html
  • Buyuksalih, I., Bayburt, S., Buyuksalih, G., Baskaraca, A. P., Karim, H., & Rahman, A. A. (2017). 3D modelling and visualization based on the Unity game engine – Advantages and challenges. ISPRS Annals of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 4, 161. https://doi.org/10.5194/isprs-annals-IV-4-W4-161-2017
  • Büyüksalih, G., Kan, T., Özkan, G., Meriç, M., Isın, L., & Kersten, T. (2020). Preserving the knowledge of the past through virtual visits: From 3D laser scanning to virtual reality visualisation at the Istanbul Çatalca İnceğiz caves. PFG. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(2), 133–146. https://doi.org/10.1007/s41064-020-00091-3
  • Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259–270. https://doi.org/10.1080/15230406.2016.1145556
  • Cartwright, W. (1999). Development of multimedia. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography. Springer. https://doi.org/10.1007/978-3-662-03784-3
  • Chen, Y. H., Tsai, M. H., Kang, S. C., & Liu, C. W. (2013). Selection and evaluation of color scheme for 4D construction models. Journal of Information Technology in Construction (ITcon), 18(1), 1–19. https://www.itcon.org/2013/1
  • Cheok, A. D., Yang, X., Ying, Z. Z., Billinghurst, M., & Kato, H. (2002). Touch-space: Mixed reality game space based on ubiquitous, tangible, and social computing. Personal and Ubiquitous Computing, 6(5), 430–442. https://doi.org/10.1007/s007790200047
  • Ciekanowska, A., Kiszczak-Gliński, A., & Dziedzic, K. (2021). Comparative analysis of unity and unreal engine efficiency in creating virtual exhibitions of 3D scanned models. Journal of Computer Sciences Institute, 20, 247–253. https://doi.org/10.35784/jcsi.2698
  • Çöltekin, A., Heil, B., Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness of interactive map interface designs: A case study integrating usability metrics with eye-movement analysis. Cartography and Geographic Information Science, 36(1), 5–17. https://doi.org/10.1559/152304009787340197
  • Çöltekin, A., Lochhead, I., Madden, M., Christophe, S., Devaux, A., Pettit, C., Lock, O., Shukla, S., Herman, L., Stachoň, Z., Kubíček, P., Snopková, D., Bernardes, S., & Hedley, N. (2020). Extended reality in spatial sciences: A review of research challenges and future directions. ISPRS International Journal of Geo-Information, 9(7), 439. https://doi.org/10.3390/ijgi9070439
  • Dent, B. D., Torguson, J. S., & Hodler, T. W. (2009). Cartography: Thematic map design (6th ed.). McGraw-Hill.
  • Edler, D., & Dickmann, F. (2017). The impact of 1980s and 1990s video games on multimedia cartography. Cartographica: The International Journal for Geographic Information and Geovisualization, 52(2), 168–177. https://doi.org/10.3138/cart.52.2.3823
  • Edler, D., Keil, J., Wiedenlübbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019). Immersive Erfahrung umstrukturierter post-industrieller Standorte in VR: Das Beispiel der “Zeche Holland” in Bochum-Wattenscheid. KN-Journal of Cartography and Geographic Information, 69(4), 267–284. https://doi.org/10.1007/s42489-019-00030-2
  • Gabbard, J. L., Hix, D., & Swan, J. E. (1999). User-centered design and evaluation of virtual environments. IEEE Computer Graphics and Applications, 19(6), 51–59. https://doi.org/10.1109/38.799740
  • Garrett, J. J. (2002). The elements of user experience: User-centered design for the web. American Institute of Graphic Arts and New Riders.
  • Guo, D., Gahegan, M., MacEachren, A. M., & Zhou, B. (2005). Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach. Cartography and Geographic Information Science, 32(2), 113–132. https://doi.org/10.1559/1523040053722150
  • Halik, Ł. (2012). The analysis of visual variables for use in the cartographic design of point symbols for mobile augmented reality applications. Geodesy and Cartography, 61(1), 19–30. https://doi.org/10.2478/V10277-012-0019-4
  • Hedley, N. (2017). Augmented reality. In D. Richardson, N. Castree, M.F. Goodchild, A. Kobayashi, W. Liu & R.A. MarstonMarston (Eds.), International encyclopedia of geography: People, the earth, environment and technology. https://doi.org/10.1002/9781118786352.wbieg0961
  • Hedley, N., Billinghurst, M., Postner, L., May, R., & Kato, H. (2002). Explorations in the use of augmented reality for geographic visualization. Presence Teleoperators & Virtual Environments, 11(2), 119–133. https://doi.org/10.1162/1054746021470577
  • Horbiński, T., & Zagata, K. (2022). View of Cartography in video games: Literature review and examples of specific solutions. KN-Journal of Cartography and Geographic Information, 72(2), 117–128. https://doi.org/10.1007/s42489-022-00104-8
  • Huang, H., Schmidt, M., & Gartner, G. (2012). Spatial knowledge acquisition with mobile maps, augmented reality and voice in the context of GPS-based pedestrian navigation: Results from a field test. Cartography and Geographic Information Science, 39(2), 107–116. https://doi.org/10.1559/15230406392107
  • International Organization for Standardization. (1999). ISO 13407: Human centered design for interactive systems.
  • Ismail, A. W., Billinghurst, M., Sunar, M. S., & Yusof, C. S. (2019). Designing an augmented reality multimodal interface for 6DOF manipulation techniques: Multimodal fusion using gesture and speech input for AR. In Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) (Vol. 1, pp. 309–322). Springer. https://doi.org/10.1007/978-3-030-01054-6_22
  • Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: An open source platform for pervasive eye tracking and mobile gaze-based interaction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (pp. 1151–1160). https://doi.org/10.1145/2638728.2641695
  • Klippel, A., Zhao, J., Jackson, K. L., La Femina, P., Stubbs, C., Wetzel, R., Blair, J., Wallgrün, J. O., & Oprean, D. (2019). Transforming earth science education through immersive experiences: Delivering on a long-held promise. Journal of Educational Computing Research, 57(7), 1745–1771. https://doi.org/10.1177/0735633119854025
  • Koch, M., von Luck, K., Schwarzer, J., & Draheim, S. (2018). The novelty effect in large display deployments–experiences and lessons-learned for evaluating prototypes. In Proceedings of 16th European Conference on Computer-Supported Cooperative Work-exploratory Papers. European Society for Socially Embedded Technologies (EUSSET). https://doi.org/10.18420/ecscw2018_3
  • Kohavi, R., & Longbotham, R. (2017). Online controlled experiments and A/B testing. Encyclopedia of Machine Learning and Data Mining, 7(8), 922–929. http://bit.ly/onlineControlledExperiments
  • Lee, B., Hu, X., Cordeil, M., Prouzeau, A., Jenny, B., & Dwyer, T. (2020). Shared surfaces and spaces: Collaborative data visualisation in a co-located immersive environment. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1171–1181. https://doi.org/10.1109/TVCG.2020.3030450
  • Liu, B., Ding, L., & Meng, L. (2021). Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartography and Geographic Information Science, 48(4), 305–319. https://doi.org/10.1080/15230406.2021.1908171
  • Lochhead, I., & Hedley, N. (2019). Mixed reality emergency management: Bringing virtual evacuation simulations into real-world built environments. International Journal of Digital Earth, 12(2), 190–208. https://doi.org/10.1080/17538947.2018.1425489
  • Lonergan, C., & Hedley, N. (2014). Flexible mixed reality and situated simulation as emerging forms of geovisualization. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(3), 175–187. https://doi.org/10.3138/carto.49.3.2440
  • MacEachren, A. M. (2004). How maps work: Representation, visualization, and design. Guilford Press.
  • MacEachren, A. M., Edsall, R., Haug, D., Baxter, R., Otto, G., Masters, R., Fuhrmann, S., & Qian, L. (1999, November). Virtual environments for geographic visualization: Potential and challenges. In Proceedings of the 1999 Workshop on New Paradigms in Information Visualization and Manipulation in Conjunction with the Eighth ACM International Conference on Information and Knowledge Management (pp. 35–40). https://doi.org/10.1145/331770.331781
  • Medyckyj-Scott, D., & Hearnshaw, H. M. (Eds.). (1993). Human factors in geographical information systems. Belhaven Press.
  • Mejia, C. (2021). Virtual Reality Integration into Geography Education: A Case Study of Physical Geography [ Unpublished master’s thesis]. San Diego State University.
  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.
  • Moore, K. (1999). VRML and java for interactive 3D cartography. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography (pp. 205–216). Springer. https://doi.org/10.1007/978-3-662-03784-3_20
  • National Science Foundation. (2002) Digital libraries (fact sheet). Retrieved July 6, 2022, from https://www.nsf.gov/news/news_summ.jsp?cntn_id=103048
  • Putz, S. (1994). Interactive information services using world wide web hypertext. In Proceedings of the First International Conference on the World-wide Web. Retrieved July 6, 2022, from http://www94.web.cern.ch/WWW94/PrelimProcs.html
  • Schmalstieg, D., & Reitmayr, G. (2007). Augmented reality as a medium for Cartography. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography. Springer. https://doi.org/10.1007/978-3-540-36651-5_19
  • Schwertley, W. (2003). QuickTime virtual reality maps for the web. In M. P. Peterson (Ed.), Maps and the internet (pp. 371–383). Elsevier Science. https://doi.org/10.1016/B978-008044201-3/50025-6
  • Shelton, B. E., & Hedley, N. R. (2002, September). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. In The First IEEE International Workshop Agumented Reality Toolkit (p. 8). IEEE. https://doi.org/10.1109/ART.2002.1106948
  • Smith, T. R., Janée, G., Frew, J., & Coleman, A. (2001, January). The Alexandria digital earth prototype. In Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’01) (pp. 118–119). Association for Computing Machinery. https://doi.org/10.1145/379437.379463
  • Stephenson, N. (1992). Snow crash. Bantam Books.
  • Stock, C., Bishop, I. D., O’Connor, A. N., Chen, T., Pettit, C. J., & Aurambout, J. P. (2013). SIEVE: Collaborative decision-making in an immersive online environment. Cartography and Geographic Information Science, 35(2), 133–144. https://doi.org/10.1559/152304008784090568
  • Swanson, J. (1999). The cartographic possibilities of VRML. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography (pp. 181–194). Springer. https://doi.org/10.1007/978-3-662-03784-3_18
  • Tsou, M. H. (2011). Revisiting web cartography in the United States: The rise of user-centered design. Cartography and Geographic Information Science, 38(3), 249–256. https://doi.org/10.1559/15230406382250
  • Tsou, M. H., & Buttenfield, B. P. (1998, July). An agent-based, global user interface for distributed Geographic information services. In Proceedings 8th International Symposium on Spatial Data Handling (pp. 603–612). International Geographic Union.
  • Urmanov, M., Alimanova, M., & Nurkey, A. (2019, December). Training unity machine learning agents using reinforcement learning method. In 2019 15th International Conference on Electronics, Computer and Computation (ICECCO) (pp. 1–4). IEEE. https://doi.org/10.1109/ICECCO48375.2019.9043194
  • van der Schee, L. H., & Jense, G. J. (1995). Interacting with geographic information in a virtual environment. In Proceedings of EGIS ’95 (Vol. 1, pp. 151–156). EGIS.
  • Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. The International Journal of Virtual Reality, 9(2), 1–20. https://doi.org/10.20870/IJVR.2010.9.2.2767
  • Veas, E., Grasset, R., Ferencik, I., Grünewald, T., & Schmalstieg, D. (2013). Mobile augmented reality for environmental monitoring. Personal and Ubiquitous Computing, 17(7), 1515–1531. https://doi.org/10.1007/s00779-012-0597-z
  • Walmsley, A., & Kersten, T. (2020). The imperial cathedral in Königslutter (Germany) as an immersive experience in virtual reality with integrated 360° panoramic photography. Applied Sciences, 10(4), 1–11. https://doi.org/10.3390/app10041517
  • Weber, A., Jenny, B., Wanner, M., Cron, J., Marty, P., & Hurni, L. (2010). Cartography meets gaming: Navigating globes, block diagrams and 2D maps with gamepads and joysticks. The Cartographic Journal, 47(1), 92–100. https://doi.org/10.1179/000870409X12472347560588
  • Wolpaw, J. R. (2007). Brain-computer interfaces (BCIs) for communication and control. In Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 1–2). https://doi.org/10.1016/s1388-2457(02)00057-3
  • Yang, Y., Dwyer, T., Jenny, B., Marriott, K., Cordeil, M., & Chen, H. (2018). Origin-destination flow maps in immersive environments. IEEE Transactions on Visualization and Computer Graphics, 25(1), 693–703. https://doi.org/10.1109/TVCG.2018.2865192
  • Zhao, J., Sensibaugh, T., Bodenheimer, B., McNamara, T. P., Nazareth, A., Newcombe, N., Minear, M., & Klippel, A. (2020). Desktop versus immersive virtual environments: Effects on spatial learning. Spatial Cognition & Computation, 20(4), 328–363. https://doi.org/10.1080/13875868.2020.1817925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.