1,578
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progress and challenges in designing landslide maps for disaster risk communication: a systematic review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 531-545 | Received 12 Nov 2022, Accepted 20 Sep 2023, Published online: 02 Nov 2023

References

  • Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076. https://doi.org/10.1007/s10346-016-0744-0
  • Albano, R., & Sole, A. (2018). Geospatial methods and tools for natural risk management and communications. ISPRS International Journal of Geo-Information, 7(12), 470. https://doi.org/10.3390/ijgi7120470
  • Alcántara-Ayala, I. (2018). TXT-tool 4.052-1.2 landslide risk communication. In K. Sassa, B. Tiwari, K. F. Liu, M. McSaveney, A. Storm, & H. Setiawan (Eds.), Landslide dynamics: ISDR-ICL landslide interactive teaching tools (Vol. 2, pp. 731–742). Springer. https://doi.org/10.1007/978-3-319-57777-7_47
  • Alcántara-Ayala, I., Garnica-Peña, R. J., Murillo-García, F. G., Salazar-Oropeza, M. O., Méndez-Martínez, A., & Coll-Hurtado, A. (2018). Landslide disaster risk awareness in Mexico: Community access to mapping at local scale. Landslides, 15(8), 1691–1704. https://doi.org/10.1007/s10346-018-1010-4
  • Alcántara-Ayala, I., & Sassa, K. (2021). Contribution of the International Consortium on landslides to the implementation of the Sendai framework for disaster risk reduction: Engraining to the science and technology roadmap. Landslides, 18(1), 21–29. https://doi.org/10.1007/s10346-020-01539-8
  • Barbarella, M., Cuomo, A., DiBenedetto, A., Fiani, M., & Guida, D. (2019). Topographic base maps from remote sensing data for engineering geomorphological modelling: An application on coastal Mediterranean landscape. Geosciences (Switzerland), 9(12), 500. https://doi.org/10.3390/geosciences9120500
  • Calvello, M., & Pecoraro, G. (2018). FraneItalia: A catalog of recent Italian landslides. Geoenvironmental Disasters, 5(1). https://doi.org/10.1186/s40677-018-0105-5
  • Chen, C. Y., & Huang, W. L. (2013). Land use change and landslide characteristics analysis for community-based disaster mitigation. Environmental Monitoring and Assessment, 185(5), 4125–4139. https://doi.org/10.1007/s10661-012-2855-y
  • Chen, S. C., & Wu, C. Y. (2016). Annual landslide risk and effectiveness of risk reduction measures in Shihmen watershed, Taiwan. Landslides, 13(3), 551–563. https://doi.org/10.1007/s10346-015-0588-z
  • Chiang, S. H., & Chang, K. T. (2011). The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 133(3–4), 143–151. https://doi.org/10.1016/j.geomorph.2010.12.028
  • Cochrane, L., & Corbett, J. (2020). Participatory mapping. Handbook of Communication for Development and Social Change, 705–713. https://doi.org/10.1007/978-981-15-2014-3_6
  • Coratza, P., Bollati, I. M., Panizza, V., Brandolini, P., Castaldini, D., Cucchi, F., Deiana, G., Del Monte, M., Faccini, F., Finocchiaro, F., Gioia, D., Melis, R., Minopoli, C., Nesci, O., Paliaga, G., Pennetta, M., Perotti, L., Pica, A., Tognetto, F., … Giardino, M. (2021). Advances in geoheritage mapping: Application to iconic geomorphological examples from the Italian landscape. Sustainability, 13(20), 11538. https://doi.org/10.3390/su132011538
  • de Bruijn, K. M., Lips, N., Gersonius, B., & Middelkoop, H. (2016). The storyline approach: A new way to analyse and improve flood event management. Natural Hazards, 81(1), 99–121. https://doi.org/10.1007/s11069-015-2074-2
  • de Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J., & Anhuf, D. (2019). Nature-based solutions (NbS) for reducing the risk of shallow landslides: Where do we stand? International Journal of Disaster Risk Reduction, 41(August), 101293. https://doi.org/10.1016/j.ijdrr.2019.101293
  • Dransch, D., Rotzoll, H., & Poser, K. (2010). The contribution of maps to the challenges of risk communication to the public. International Journal of Digital Earth, 3(3), 292–311. https://doi.org/10.1080/17538941003774668
  • Fanos, A. M., Pradhan, B., Alamri, A., & Lee, C. W. (2020). Machine learning-based and 3d kinematic models for rockfall hazard assessment using LiDAR data and GIS. Remote Sensing, 12(11), 1755. https://doi.org/10.3390/rs12111755
  • Gaillard, J. C., & Pangilinan, M. L. C. J. D. (2010). Participatory mapping for raising disaster risk awareness among the youth. Journal of Contingencies and Crisis Management, 18(3), 175–179. https://doi.org/10.1111/j.1468-5973.2010.00614.x
  • Gallopín, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16(3), 293–303. https://doi.org/10.1016/j.gloenvcha.2006.02.004
  • Gomez, C., & Hotta, N. (2021). Deposits’ morphology of the 2018 Hokkaido Iburi-Tobu earthquake mass movements from LiDAR & aerial photographs. Remote Sensing, 13(17), 3421. https://doi.org/10.3390/rs13173421
  • Griffiths, J. S., & Abraham, J. K. (2008). Factors affecting the use of applied geomorphology maps to communicate with different end-users. Journal of Maps, 4(1), 201–210. https://doi.org/10.4113/jom.2008.89
  • Hadmoko, D. S., Lavigne, F., Sartohadi, J., Hadi, P., & Winaryo. (2010). Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Natural Hazards, 54(3), 623–642. https://doi.org/10.1007/s11069-009-9490-0
  • Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21(4), 209–249. https://doi.org/10.1207/s1532690xci2104_1
  • Henstra, D., Minano, A., & Thistlethwaite, J. (2019). Communicating disaster risk? An evaluation of the availability and quality of flood maps. Natural Hazards and Earth System Sciences, 19(1), 313–323. https://doi.org/10.5194/nhess-19-313-2019
  • ICL-IPL. (2021). Kyoto 2020 commitment for global promotion of understanding and reducing landslide disaster risk. https://doi.org/10.1007/978-3-030-60196-6_7
  • ISDR-ICL. (2015). ISDR-ICL Sendai Partnerships 2015-2025 for global promotion of understanding and reducing landslide disaster risk. http://wlf5.iplhq.org/wp-content/uploads/2018/01/ISDR-ICL-Sendai-Partnerships-2015-2025-18.01.08.pdf
  • Ismail-Zadeh, A. (2022). Natural hazards and climate change are not drivers of disasters. Natural Hazards, 111(2), 2147–2154. https://doi.org/10.1007/s11069-021-05100-1
  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1), 5–28. https://doi.org/10.1007/s11069-010-9634-2
  • Jaiswal, P., & van Westen, C. J. (2013). Use of quantitative landslide hazard and risk information for local disaster risk reduction along a transportation corridor: A case study from Nilgiri district, India. Natural Hazards, 65(1), 887–913. https://doi.org/10.1007/s11069-012-0404-1
  • Karnawati, D., Fathani, T. F., Wilopo, W., & Andayani, B. (2018). TXT-tool 4.062-1.1 community hazard maps for landslide risk reduction. In K. Sassa, B. Tiwari, K. F. Liu, M. McSaveney, A. Storm, & H. Setiawan (Eds.), Landslide dynamics: ISDR-ICL landslide interactive teaching tools (Vol. 2, pp. 599–606). Springer International Publishing. https://doi.org/10.1007/978-3-319-57777-7_36
  • Karnawati, D., Fathani, T. F., Wilopo, W., & Maarif, S. (2018). TXT-tool 4.062-1.1 a socio-technical approach for landslide mitigation and risk reduction. In K. Sassa, B. Tiwari, K. F. Liu, M. McSaveney, A. Storm, & H. Setiawan (Eds.), Landslide dynamics: ISDR-ICL landslide interactive teaching tools (Vol. 2, pp. 621–630). https://doi.org/10.1007/978-3-319-57777-7_38
  • Kellens, W., Vanneuville, W., Ooms, K., & De Maeyer, P. (2009). Communicating flood risk to the public by cartography. In Proceedings of the 24th International Cartographic Conferences, Santiago Chile, February 2016, 1–11.
  • Klimeš, J., Rosario, A. M., Vargas, R., Raška, P., Vicuña, L., & Jurt, C. (2019). Community participation in landslide risk reduction: A case history from Central Andes, Peru. Landslides, 16(9), 1763–1777. https://doi.org/10.1007/s10346-019-01203-w
  • Lee, C.-F., Huang, W.-K., Chang, Y.-L., Chi, S.-Y., & Liao, W.-C. (2018). Regional landslide susceptibility assessment using multi-stage remote sensing data along the coastal range highway in northeastern Taiwan. Geomorphology, 300, 113–127. https://doi.org/10.1016/j.geomorph.2017.10.019
  • Leng, Y., Kong, X., He, J., Xing, A., Zhang, Y., & Wang, Q. (2022). The July 10, 2020, red-bed landslide triggered by continuous rainfall in Qianxi, Guizhou, China. Landslides, 19(6), 1421–1433. https://doi.org/10.1007/s10346-022-01851-5
  • Liquete, C., Piroddi, C., Drakou, E. G., Gurney, L., Katsanevakis, S., Charef, A., Egoh, B., & Bograd, S. J. (2013). Current status and future prospects for the assessment of Marine and coastal ecosystem services: A systematic review. PLoS ONE, 8(7), e67737. https://doi.org/10.1371/journal.pone.0067737
  • Mossa, J., Chen, Y., & Wu, C. (2019). Geovisualization geoscience of large river floodplains. Journal of Maps, 15(3), 75–91. https://doi.org/10.1080/17445647.2019.1584129
  • Nonomura, A., Fujisawa, K., Takahashi, M., Matsumoto, H., & Hasegawa, S. (2020). Analysis of the actions and motivations of a community during the 2017 torrential rains in northern Kyushu, Japan. International Journal of Environmental Research and Public Health, 17(7), 2424. https://doi.org/10.3390/ijerph17072424
  • Peng, Q., Li, Z., & Gong, X. (2021). Exploring the effects of background image transparency on the usability of image maps. Transactions in GIS, 25(6), 3002–3024. https://doi.org/10.1111/tgis.12805
  • Pratiwi, E. S., Sartohadi, J., & Wahyudi. (2019). Geoelectrical prediction for sliding plane layers of rotational landslide at the volcanic transitional landscapes in Indonesia. IOP Conference Series: Earth and Environmental Science, 286(1), 012028. https://doi.org/10.1088/1755-1315/286/1/012028
  • Regolini-Bissig, G. (2010). Mapping geoheritage for interpretive purpose: Definition and interdisciplinary approach. Mapping Geoheritage, 35(35), 1–13.
  • Rivera, F. I., & Kapucu, N. (2015). Disaster vulnerability, hazards and resilience: Perspectives from Florida. Disaster Vulnerability, Hazards and Resilience: Perspectives from Florida, 1–200. https://doi.org/10.1007/978-3-319-16453-3
  • Roth, R. E. (2021). Cartographic design as visual storytelling: Synthesis and review of map-based narratives, genres, and tropes. The Cartographic Journal, 58(1), 83–114. https://doi.org/10.1080/00087041.2019.1633103
  • Ruiz-Cortés, N. S., & Alcántara-Ayala, I. (2020). Landslide exposure awareness: A community-based approach towards the engagement of children. Landslides, 17(6), 1501–1514. https://doi.org/10.1007/s10346-020-01391-w
  • Setiawan, H., Retnaningrum, E., Arrisaldi, T., & Wilopo, W. (2021). Capacity building and community preparedness towards landslide disaster in Pagerharjo village, Kulon Progo Regency of Yogyakarta, Indonesia. In F. Guzzetti, S. Mihalić Arbanas, P. Reichenbach, K. Sassa, P. T. Bobrowsky, & K. Takara (Eds.), Understanding and reducing landslide disaster risk, ICL contribution to landslide disaster risk reduction (pp. 603–610). Springer. https://doi.org/10.1007/978-3-030-60196-6_54
  • Shinohara, Y., & Kume, T. (2022). Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Science of the Total Environment, 827, 154392. https://doi.org/10.1016/j.scitotenv.2022.154392
  • Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
  • Song, J., Yamauchi, H., Oguchi, T., & Ogura, T. (2022). Application of web hazard maps to high school education for disaster risk reduction. International Journal of Disaster Risk Reduction, 72(February), 102866. https://doi.org/10.1016/j.ijdrr.2022.102866
  • Sultana, N. (2020). Analysis of landslide-induced fatalities and injuries in Bangladesh: 2000-2018. Cogent Social Sciences, 6(1), 2000–2018. https://doi.org/10.1080/23311886.2020.1737402
  • Tanner, J., & Hale, C. (2002). The workshop as an effective method of dissemination: The importance of the needs of the individual. Journal of Nursing Management, 10(1), 47–54. https://doi.org/10.1046/j.0966-0429.2001.00303.x
  • Thanh, N. K., Miyagi, T., Isurugi, S., Van Tien, D., Luong, L. H., & Ha, D. N. (2021). Developing recognition and simple mapping by UAV/SfM for local resident in mountainous area in Vietnam—A case study in Po Xi Ngai community, Laocai Province. In F. Guzzetti, S. Mihalić Arbanas, P. Reichenbach, K. Sassa, P. T. Bobrowsky, & K. Takara (Eds.), Understanding and reducing landslide disaster risk. ICL contribution to landslide risk reduction (pp. 103–109). Springer. https://doi.org/10.1007/978-3-030-60227-7_10
  • Thiery, Y., Terrier, M., Colas, B., Fressard, M., Maquaire, O., Grandjean, G., & Gourdier, S. (2020). Improvement of landslide hazard assessments for regulatory zoning in France: STATE–OF–THE-ART perspectives and considerations. International Journal of Disaster Risk Reduction, 47, 101562. https://doi.org/10.1016/j.ijdrr.2020.101562
  • Tsai, Y. J., Syu, F. T., Shieh, C. L., Chung, C. R., Lin, S. S., & Yin, H. Y. (2021). Framework of emergency response system for potential large-scale landslide in Taiwan. Water, 13(5), 712. https://doi.org/10.3390/w13050712
  • Tufano, R., Formetta, G., Calcaterra, D., & De Vita, P. (2021). Hydrological control of soil thickness spatial variability on the initiation of rainfall-induced shallow landslides using a three-dimensional model. Landslides, 18(10), 3367–3380. https://doi.org/10.1007/s10346-021-01681-x
  • Tversky, B., Marrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. https://doi.org/10.1006/ijhc.1017
  • Tyner, J. A. (2014). Principles of map design. The Guilford Press.
  • Van Kerkvoorde, M., Kellens, W., Verfaillie, E., & Ooms, K. (2018). Evaluation of web maps for the communication of flood risks to the public in Europe. International Journal of Cartography, 4(1), 49–64. https://doi.org/10.1080/23729333.2017.1371411
  • Verbovšek, T., Popit, T., & Kokalj, Z. (2019). VAT method for visualization of mass movement features: An alternative to hillshaded DEM. Remote Sensing, 11(24), 2946. https://doi.org/10.3390/rs11242946
  • Wadhawan, S. K., Singh, B., & Ramesh, M. V. (2020). Causative factors of landslides 2019: Case study in Malappuram and Wayanad districts of Kerala, India. Landslides, 17(11), 2689–2697. https://doi.org/10.1007/s10346-020-01520-5
  • Wang, M., Liu, M., Yang, S., & Shi, P. (2014). Incorporating triggering and Environmental factors in the analysis of earthquake-induced landslide Hazards. International Journal of Disaster Risk Science, 5(2), 125–135. https://doi.org/10.1007/s13753-014-0020-7
  • Wicks, D. (2017). The coding manual for qualitative researchers (3rd ed.). Qualitative Research in Organizations & Management: An International Journal, 12(2), 169–170. https://doi.org/10.1108/qrom-08-2016-1408
  • Wu, B. S., Chuang, R. Y., Chen, Y. C., & Lin, Y. S. (2022). Characteristics of landslides triggered by the 2013 M L6.5 Nantou, Taiwan, earthquake. Earth, Planets and Space, 74(1). https://doi.org/10.1186/s40623-021-01560-8
  • Yazdani, M., Mojtahedi, M., Loosemore, M., Sanderson, D., & Dixit, V. (2021). Hospital evacuation modelling: A critical literature review on current knowledge and research gaps. International Journal of Disaster Risk Reduction, 66(October), 102627. https://doi.org/10.1016/j.ijdrr.2021.102627