240
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Urban thermal map design considerations: color, shading, and resolution

ORCID Icon, ORCID Icon & ORCID Icon
Received 24 Jan 2023, Accepted 26 Sep 2023, Published online: 26 Oct 2023

References

  • Adaktylou, N. (2020). Remote sensing as a tool for phenomenon-based teaching and learning at the elementary school level: A case study for the urban heat island effect. International Journal of Educational Methodology, 6(3), 517–532. https://doi.org/10.12973/ijem.6.3.517
  • Armstrong, M. P., Densham, P. J., Lolonis, P., & Rushton, G. (1992). Cartographic displays to support locational decision making. Cartography and Geographic Information Systems, 19(3), 154–164. https://doi.org/10.1559/152304092783762263
  • Atzl, C., Mittlboeck, M., & Knoth, L. (2022). Design decisions for multidimensional digital and interactive basemaps of urban environments. Cartography and Geographic Information Science, 49(3), 220–236. https://doi.org/10.1080/15230406.2021.2015719
  • Baik, J. J., Kim, Y. H., Kim, J. J., & Han, J. Y. (2007). Effects of boundary-layer stability on urban heat island-induced circulation. Theoretical and Applied Climatology, 89(1–2), 73–81. https://doi.org/10.1007/s00704-006-0254-4
  • Baker, K. M., Johnson, A. C., Callahan, C. N., & Petcovic, H. L. (2015). Use of cartographic images by expert and novice field geologists in planning fieldwork routes. Cartography and Geographic Information Science, 43(2), 176–187. https://doi.org/10.1080/15230406.2015.1072735
  • Basu, R. (2009). High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environmental Health, 8(1), 40. https://doi.org/10.1186/1476-069X-8-40
  • Battersby, S. E., Hodgson, M. E., & Wang, J. (2012). Spatial resolution imagery requirements for identifying structure damage in a hurricane disaster. Photogrammetric Engineering and Remote Sensing, 78(6), 625–635. https://doi.org/10.14358/pers.78.6.625
  • Benz, S. A., & Burney, J. A. (2021). Widespread race and class disparities in surface urban heat extremes across the United States. Earth’s Future, 9(7). https://doi.org/10.1029/2021EF002016
  • Berger, C., Riedel, F., Rosentreter, J., Stein, E., Hese, S., & Schmullius, C. (2014). Fusion of airborne hyperspectral and LiDAR remote sensing data to study the thermal characteristics of urban environments. Computational Approaches for Urban Environments, 273–292. https://doi.org/10.1007/978-3-319-11469-9_11
  • Bergman, L. D., Rogowitz, B. E., & Treinish, L. A. (1995). A rule-based tool for assisting colormap selection. IEEE Visualization, 118–125. https://doi.org/10.5555/832271.833862
  • Borkin, M., Gajos, K., Peters, A., Mitsouras, D., Melchionna, S., Rybicki, F., Feldman, C., & Pfister, H. (2011). Evaluation of artery visualizations for heart disease diagnosis. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2479–2488. https://doi.org/10.1109/tvcg.2011.192
  • Borland, D., & Taylor, R. M. (2007). Rainbow color map (still) considered harmful. IEEE Computer Graphics and Applications, 27(2), 14–17. https://doi.org/10.1109/mcg.2007.323435
  • Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment, 34(3), 507–516. https://doi.org/10.1016/S1352-2310(99)00374-X
  • Brewer, C. A. (1997). Spectral schemes: Controversial color use on maps. Cartography and Geographic Information Systems, 24(4), 203–220. https://doi.org/10.1559/152304097782439231
  • Brewer, C. A., MacEachren, A. M., Pickle, L. W., & Herrmann, D. (1997). Mapping mortality: Evaluating color schemes for choropleth maps. Annals of the Association of American Geographers, 87(3), 411–438. https://doi.org/10.1111/1467-8306.00061
  • Chen, Y. C., Chen, C. Y., Matzarakis, A., Liu, J. K., & Lin, T. P. (2016). Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data. Atmospheric Research, 174–175, 151–159. https://doi.org/10.1016/j.atmosres.2016.01.004
  • Chen, Y.-C., Chiu, H.-W., Su, Y.-F., Wu, Y.-C., & Cheng, K.-S. (2017). Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258. https://doi.org/10.1016/j.landurbplan.2016.06.014
  • Chen, T., Jiang, W., Chen, M., Hu, K., Lv, X., & Mu, X. (2023). An automatic approach to generating barrier-free qualitative schemes for color vision deficiency. Cartography and Geographic Information Science, 50(5), 433–450. https://doi.org/10.1080/15230406.2023.2215449
  • Clark, S. S., Chester, M. V., Seager, T. P., & Eisenberg, D. A. (2018). The vulnerability of interdependent urban infrastructure systems to climate change: Could Phoenix experience a Katrina of extreme heat? Sustainable and Resilient Infrastructure, 4(1), 21–35. https://doi.org/10.1080/23789689.2018.1448668
  • Cook, B., Corp, L., Nelson, R., Middleton, E., Morton, D., McCorkel, J., Masek, J., Ranson, K., Ly, V., & Montesano, P. (2013). NASA goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sensing, 5(8), 4045–4066. https://doi.org/10.3390/rs5084045
  • Cui, Y., Xu, X., Dong, J., & Qin, Y. (2016). Influence of urbanization factors on surface urban heat island intensity: A comparison of countries at different developmental phases. Sustainability (Switzerland), 8(8), 706. https://doi.org/10.3390/su8080706
  • Daffara, C., Muradore, R., Piccinelli, N., Gaburro, N., de Rubeis, T., & Ambrosini, D. (2020). A cost-effective system for aerial 3D thermography of buildings. Journal of Imaging, 6(8), 76. https://doi.org/10.3390/jimaging6080076
  • Dahaghin, M., Samadzadegan, F., & Dadrass Javan, F. (2021). Precise 3D extraction of building roofs by fusion of UAV-based thermal and visible images. International Journal of Remote Sensing, 42(18), 7002–7030. https://doi.org/10.1080/01431161.2021.1951875
  • de Luis-Ruiz, J. M., Sedano-Cibrián, J., Pérez-Álvarez, R., Pereda-García, R., & Malagón-Picón, B. (2021). Metric contrast of thermal 3D models of large industrial facilities obtained by means of low-cost infrared sensors in UAV platforms. International Journal of Remote Sensing, 43(2), 457–483. https://doi.org/10.1080/01431161.2021.2003903
  • DeValois, R. L., & DeValois, K. K. (1990). Spatial vision (Oxford psychology series, 14) (revised). Oxford University Press.
  • D’Ippoliti, D., Michelozzi, P., Marino, C., De’donato, F., Menne, B., Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramón, M., Paldy, A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iñiguez, C., & Perucci, C. A. (2010). The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health, 9(1), 37. https://doi.org/10.1186/1476-069X-9-37
  • Dixon, P. G., & Mote, T. L. (2003). Patterns and causes of Atlanta’s urban heat island–initiated precipitation. Journal of Applied Meteorology, 42(9), 1273–1284. https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2
  • Dong, W., Ying, Q., Yang, T., Zhu, L., Liu, Y., & Wan, X. (2023). Geography education improves spatial ability: Evidence from fMRI and behavioral experiments. Cartography and Geographic Information Science, 50(3), 289–305. https://doi.org/10.1080/15230406.2023.2171493
  • Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., & Lymburner, L. (2018). Analysis ready data: Enabling analysis of the Landsat archive. Remote Sensing, 10(9), 1363. https://doi.org/10.3390/rs10091363
  • Ebi, K. L., Balbus, J. M., Luber, G., Bole, A., Crimmins, A., Glass, G., Saha, S., Shimamoto, M. M., trtanj, T., & White-Newsome, J. L. (2018). Human health. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth national climate assessment (Vol. 2, pp. 1309–1345). https://doi.org/10.7930/NCA4.2018.CH28
  • Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the Landsat series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471
  • Felicísimo, Á. M., & Martín-Tardío, M. A. (2017). A method of downscaling temperature maps based on analytical hillshading for use in species distribution modelling. Cartography and Geographic Information Science, 45(4), 329–338. https://doi.org/10.1080/15230406.2017.1338620
  • Gienko, G., & Govorov, M. (2019). Improving the efficiency of image interpretation using ground truth terrestrial photographs. IGI Global eBooks, 1098–1128. https://doi.org/10.4018/978-1-5225-7033-2.ch049
  • Graham, N. V. S. (1989). Visual pattern analyzers (Oxford psychology series, 16). Oxford University Press.
  • Guardaro, M., Messerschmidt, M., Hondula, D. M., Grimm, N. B., & Redman, C. L. (2020). Building community heat action plans story by story: A three neighborhood case study. Cities, 107, 102886. https://doi.org/10.1016/j.cities.2020.102886
  • Habeeb, D., Vargo, J., & Stone, B. (2015). Rising heat wave trends in large US cities. Natural Hazards, 76(3), 1651–1665. https://doi.org/10.1007/s11069-014-1563-z
  • Hajat, S., Vardoulakis, S., Heaviside, C., & Eggen, B. (2014). Climate change effects on human health: Projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. Journal of Epidemiology and Community Health, 68(7), 641–648. https://doi.org/10.1136/jech-2013-202449
  • Hansen, A., Bi, P., Nitschke, M., Ryan, P., Pisaniello, D., & Tucker, G. (2008). The effect of heat waves on mental Health in a temperate Australian city. Environmental Health Perspectives, 116(10), 1369–1375. https://doi.org/10.1289/ehp.11339
  • Harlan, S. L., Brazel, A. J., Jenerette, G. D., Jones, N. S., Larsen, L., Prashad, L., & Stefanov, W. L. (2007). In the shade of affluence: The inequitable distribution of the urban heat island. In R. C. Wilkinson and W. R. Freudenburg (Eds.), Equity and the environment (research in social problems and public policy (Vol. 15, pp. 173–202). Emerald Group Publishing Limited. https://doi.org/10.1016/S0196-1152(07)15005-5
  • Hegarty, M., Smallman, H. S., Stull, A. T., & Canham, M. S. (2009). Naïve cartography: How intuitions about display configuration can hurt performance. Cartographica: The International Journal for Geographic Information & Geovisualization, 44(3), 171–186. https://doi.org/10.3138/carto.44.3.171
  • Hiemstra, J. A., Saaroni, H., & Amorim, J. H. (2017). The urban heat island: Thermal comfort and the role of urban greening. Future City, 7–19. https://doi.org/10.1007/978-3-319-50280-9_2
  • Hoffman, J. S., Shandas, V., & Pendleton, N. (2020). The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate, 8(1), 12. https://doi.org/10.3390/cli8010012
  • Howard, L. (1833). The Climate of London (Vol. 1).
  • Imhof, E. (1982). Cartographic relief presentation. ESRI Press.
  • Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. https://doi.org/10.1016/j.rse.2009.10.008
  • Jenny, B., & Patterson, T. (2021). Aerial perspective for shaded relief. Cartography and Geographic Information Science, 48(1), 21–28. https://doi.org/10.1080/15230406.2020.1813052
  • Kehrer, L. (1989). Central performance drop on perceptual segregation tasks. Spatial Vision, 4(1), 45–62. https://doi.org/10.1163/156856889X00040
  • Klinenberg. (2003). Heat wave: A social autopsy of disaster in Chicago. Choice Reviews Online, 40(7), 40–4319. https://doi.org/10.5860/choice.40-4319
  • Krehbiel, C., & Henebry, G. (2016). A comparison of multiple datasets for monitoring thermal time in urban areas over the U.S. upper midwest. Remote Sensing, 8(4), 297. https://doi.org/10.3390/rs8040297
  • Kumler, M. P., & Groop, R. E. (1990). Continuous-tone mapping of smooth surfaces. Cartography and Geographic Information Systems, 17(4), 279–289. https://doi.org/10.1559/152304090783805681
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00863
  • Laliberte, A. S., Goforth, M. A., Steele, C. M., & Rango, A. (2011). Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sensing, 3(11), 2529–2551. https://doi.org/10.3390/rs3112529
  • Lee, W. V. (2014). Historical global analysis of occurrences and human casualty of extreme temperature events (ETEs). Natural Hazards, 70(2), 1453–1505. https://doi.org/10.1007/s11069-013-0884-7
  • Lim, T. C., Wilson, B., Grohs, J. R., & Pingel, T. J. (2022). Community-engaged heat resilience planning: Lessons from a youth smart city STEM program. Landscape and Urban Planning, 226, 104497. https://doi.org/10.1016/j.landurbplan.2022.104497
  • Liu, Y., & Heer, J. (2018). Somewhere over the rainbow: An empirical assessment of quantitative colormaps. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3174172
  • Lowe, S. A. (2016). An energy and mortality impact assessment of the urban heat island in the US. Environmental Impact Assessment Review, 56, 139–144. https://doi.org/10.1016/j.eiar.2015.10.004
  • Lundgren, K., Kuklane, K., Gao, C., & Holmér, I. (2013). Effects of heat stress on working populations when facing climate change. Industrial Health, 51(1), 3–15. https://doi.org/10.2486/indhealth.2012-0089
  • MacEachren, A. M. (1994). Visualization in modern cartography: Setting the agenda. Elsevier eBooks, 1–12. https://doi.org/10.1016/b978-0-08-042415-6.50008-9
  • Meerow, S., & Keith, L. (2021). Planning for extreme heat. Journal of the American Planning Association, 88(3), 319–334. https://doi.org/10.1080/01944363.2021.1977682
  • Mersey, J. E. (1990). Colour and thematic map design: The role of colour scheme and map complexity in choropleth map communication. University of Toronto Press.
  • Mikhailov, A. (2019, August 20). Turbo, an improved rainbow colormap for visualization. https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
  • Moreland, K. (2009). Diverging color maps for scientific visualization. In Proceedings of the 5th International Symposium on Visual Computing. https://doi.org/10.1007/978-3-642-10520-3_9
  • Moreland, K. (2016). Why we use bad color maps and what you can do about it. Electronic Imaging, 28(16), 1–6. https://doi.org/10.2352/issn.2470-1173.2016.16.hvei-133
  • Morrison, W., Kotthaus, S., & Grimmond, S. (2021). Urban surface temperature observations from ground-based thermography: Intra- and inter-facet variability. Urban Climate, 35, 100748. https://doi.org/10.1016/j.uclim.2020.100748
  • Morrison, W., Kotthaus, S., Grimmond, C. S. B., Inagaki, A., Yin, T., Gastellu-Etchegorry, J. P., Kanda, M., & Merchant, C. J. (2018). A novel method to obtain three-dimensional urban surface temperature from ground-based thermography. Remote Sensing of Environment, 215, 268–283. https://doi.org/10.1016/j.rse.2018.05.004
  • Munn, K., & Dragićević, S. (2020). Spatial multi-criteria evaluation in 3D context: Suitability analysis of urban vertical development. Cartography and Geographic Information Science, 48(2), 105–123. https://doi.org/10.1080/15230406.2020.1845981
  • Nagoor, B., & Jones. (2017). Data painter: A tool for colormap interaction. CGVC, 69–76. https://doi.org/10.2312/cgvc.20171280
  • Najafifar, A., Hosseinzadeh, J., & Karamshahi, A. (2019). The role of hillshade, aspect, and toposhape in the woodland dieback of arid and semi-arid ecosystems: A case study in Zagros woodlands of Ilam Province, Iran. Journal of Landscape Ecology, 12(2), 79–91. https://doi.org/10.2478/jlecol-2019-0011
  • Naughton, J., & McDonald, W. (2019). Evaluating the variability of urban land surface temperatures using drone observations. Remote Sensing, 11(14), 1722. https://doi.org/10.3390/rs11141722
  • Nazareth, A., Newcombe, N. S., Shipley, T. F., Velazquez, M., & Weisberg, S. M. (2019). Beyond small-scale spatial skills: Navigation skills and geoscience education. Cognitive Research: Principles and Implications, 4(1). https://doi.org/10.1186/s41235-019-0167-2
  • Newcombe, N. S., Weisberg, S. M., Atit, K., Jacovina, M. E., Ormand, C. J., & Shipley, T. F. (2015). The lay of the land: Sensing and representing topography. Baltic International Yearbook of Cognition, Logic and Communication, 10(1), 6. https://doi.org/10.4148/1944-3676.1099
  • Nichol, J. (2005). Remote sensing of urban heat islands by day and night. Photogrammetric Engineering & Remote Sensing, 71(5), 613–621. https://doi.org/10.14358/PERS.71.5.613
  • Nichol, J., & Wong, M. S. (2009). High resolution remote sensing of densely urbanised regions: A case study of Hong Kong. Sensors, 9(6), 4695–4708. https://doi.org/10.3390/s90604695
  • Olson, J. M., & Brewer, C. A. (1997). An evaluation of color selections to accommodate map users with color‐vision impairments. Annals of the Association of American Geographers, 87(1), 103–134. https://doi.org/10.1111/0004-5608.00043
  • Onorati, G., Ventura, R., Poscolieri, M., Chiarini, V., & Crucillà, U. (1992). The digital elevation model of Italy for geomorphology and structural geology. Catena, 19(2), 147–178. https://doi.org/10.1016/0341-8162(92)90022-4
  • Peirce, J. W. (2007). PsychoPy—Psychophysics software in python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
  • Phillips, R. J., Lucia, A., & Skelton, N. (1975). Some objective tests of the legibility of relief maps. The Cartographic Journal, 12(1), 39–46. https://doi.org/10.1179/caj.1975.12.1.39
  • Pingel, T., & Clarke, K. (2014). Perceptually shaded slope maps for the visualization of digital surface models. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(4), 225–240. https://doi.org/10.3138/carto.49.4.2141
  • Previtali, M., Erba, S., Rosina, E., Redaelli, V., Scaioni, M., & Barazzetti, L. (2012). Generation of a GIS-based environment for infrared thermography analysis of buildings. SPIE Proceedings. https://doi.org/10.1117/12.930050
  • Rajashekar, U., Bovik, A. C., & Cormack, L. K. (2006). Visual search in noise: Revealing the influence of structural cues by gaze-contingent classification image analysis. Journal of Vision, 6(4), 7. https://doi.org/10.1167/6.4.7
  • Reda, K., Salvi, A. A., Gray, J., & Papka, M. E. (2021). Color nameability predicts inference accuracy in spatial visualizations. Eurographics Conference on Visualization (EuroVis), 40(3), 49–60. https://doi.org/10.1111/cgf.14288
  • Reda, K., & Szafir, D. (2021). Rainbows revisited: Modeling effective colormap design for graphical inference. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1032–1042. https://doi.org/10.1109/TVCG.2020.3030439
  • Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17. https://doi.org/10.1167/7.2.17
  • Sailor, D. J., Baniassadi, A., O’Lenick, C. R., & Wilhelmi, O. V. (2019). The growing threat of heat disasters. Environmental Research Letters, 14(5), 054006. https://doi.org/10.1088/1748-9326/ab0bb9
  • Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40(10), 1743–1758. https://doi.org/10.1016/j.atmosenv.2005.11.037
  • Schloss, K. B., Gramazio, C. C., Silverman, A. T., Parker, M. L., & Wang, A. S. (2019). Mapping color to meaning in colormap data visualizations. IEEE Transactions on Visualization and Computer Graphics, 25(1), 810–819. https://doi.org/10.1109/TVCG.2018.2865147
  • Shandas, V., Voelkel, J., Williams, J., & Hoffman, J. (2019). Integrating satellite and ground measurements for predicting locations of extreme urban heat. Climate, 7(1), 5. https://doi.org/10.3390/cli7010005
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701
  • Sheridan, S. C., & Allen, M. J. (2018). Temporal trends in human vulnerability to excessive heat. Environmental Research Letters, 13(4), 043001. https://doi.org/10.1088/1748-9326/aab214
  • Slocum, T. A., Blok, C., Jiang, B., Koussoulakou, A., Montello, D. R., Fuhrmann, S., & Hedley, N. (2001). Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science, 28(1), 61–75. https://doi.org/10.1559/152304001782173998
  • Song, B., & Park, K. (2020). Verification of accuracy of unmanned aerial vehicle (UAV) land surface temperature images using in-situ data. Remote Sensing, 12(2), 288. https://doi.org/10.3390/rs12020288
  • Son, H., Kim, C., & Choi, H. (2019). High-quality as-is 3D thermal modeling in MEP systems using a deep convolutional network. Advanced Engineering Informatics, 42, 100999. https://doi.org/10.1016/j.aei.2019.100999
  • Sousa, M. J., Moutinho, A., & Almeida, M. (2020). Thermal infrared Sensing for near real-time data-driven fire detection and monitoring Systems. Sensors, 20(23), 6803. https://doi.org/10.3390/s20236803
  • Thomson, H., Simcock, N., Bouzarovski, S., & Petrova, S. (2019). Energy poverty and indoor cooling: An overlooked issue in Europe. Energy and Buildings, 196, 21–29. https://doi.org/10.1016/j.enbuild.2019.05.014
  • Thyng, K., Greene, C., Hetland, R., Zimmerle, H., & DiMarco, S. (2016). True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29(3), 9–13. https://doi.org/10.5670/oceanog.2016.66
  • UN Environment Programme. (2021). Beating the heat: A sustainable cooling handbook for cities.
  • U.S. Census Bureau. (2020). Population, census. Retrieved April 1, 2020, from https://www.census.gov/quickfacts/fact/table/atlantacitygeorgia,GA/PST045221
  • US EPA. (2022, March 15). Heat Island compendium. https://www.epa.gov/heatislands/heat-island-compendium
  • Vasterling, M., & Meyer, U. (2013). Challenges and opportunities for UAV-borne thermal imaging. In Remote sensing and digital image processing (Vol. 17, pp. 69–92). Springer International Publishing. https://doi.org/10.1007/978-94-007-6639-6_4
  • Villa, T. F., Jayaratne, E. R., Gonzalez, L. F., & Morawska, L. (2017). Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle. Environmental Pollution, 230, 134–142. https://doi.org/10.1016/j.envpol.2017.06.033
  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. Isprs Journal of Photogrammetry & Remote Sensing, 64(4), 335–344. https://doi.org/10.1016/j.isprsjprs.2009.03.007
  • Wilson, B. (2020). Urban heat management and the legacy of redlining. Journal of the American Planning Association, 86(4), 443–457. https://doi.org/10.1080/01944363.2020.1759127
  • Yang, F., & Chen, L. (2016). Developing a thermal atlas for climate-responsive urban design based on empirical modeling and urban morphological analysis. Energy and Buildings, 111, 120–130. https://doi.org/10.1016/j.enbuild.2015.11.047
  • Yang, Y., & Lee, X. (2019). Four-band thermal mosaicking: A new method to process infrared thermal imagery of urban landscapes from UAV flights. Remote Sensing, 11(11), 1365. https://doi.org/10.3390/rs11111365
  • Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. https://doi.org/10.1038/23936
  • Zeller, S., Samsel, F., & Navratil, P. (2020). Environmental visualization: Moving beyond the rainbows. Practice and Experience in Advanced Research Computing, 321–326. https://doi.org/10.1145/3311790.3396667
  • Zhang, Y., Fjeld, M., Fratarcangeli, M., Said, A., & Zhao, S. (2021). Affective colormap design for accurate visual comprehension in industrial tomography. Sensors, 21(14), 4766. https://doi.org/10.3390/s21144766
  • Zhao, Y., Feng, D., Yu, L., See, L., Fritz, S., Perger, C., & Gong, P. (2017). Assessing and improving the reliability of volunteered land cover reference data. Remote Sensing, 9(10), 1034. https://doi.org/10.3390/rs9101034
  • Zhou, D., Zhao, S., Zhang, L., & Liu, S. (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sensing of Environment, 176, 272–281. https://doi.org/10.1016/j.rse.2016.02.010
  • Zhu, B., & Chen, H. (2008). Information visualization for decision support. Handbook on Decision Support Systems, 2, 699–722. https://doi.org/10.1007/978-3-540-48716-6_32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.