34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Progressive merging of blocks taking into account functional semantics and grid features

ORCID Icon, &
Received 21 Dec 2023, Accepted 06 May 2024, Published online: 28 May 2024

References

  • Ai, T., & Cheng, J. (2005). Key issues of multi-scale representation of spatial data. Geomatics and Information Science of Wuhan University, 30(5), 377–382. https://doi.org/10.3321/j.issn:1671-8860.2005.05.001
  • Ai, T., & Liu, Y. (2002). Aggregation and amalgamation in land-use data generalization. Geomatics and Information Science of Wuhan University, 27(5), 486–492. https://doi.org/10.1080/12265080208422884
  • Atallah, M. J. (1983). A linear time algorithm for the Hausdorff distance between convex polygons. Information Processing Letters, 17(4), 207–209. https://doi.org/10.1016/0020-0190(83)90042-X
  • Bai, Y. B., Yong, J. H., Liu, C. Y., Liu, X. M., & Meng, Y. (2011). Polyline approach for approximating Hausdorff distance between planar free-form curves. Computer-Aided Design, 43(6), 687–698. https://doi.org/10.1016/j.cad.2011.02.008
  • Bijun, L. (2011). Extracting hierarchical landmarks from urban POI data. Journal of Remote Sensing, 15(5), 973–988. https://doi.org/10.11834/jrs.20110173
  • Chen, J., Hu, Y., Li, Z., Zhao, R., & Meng, L. (2009). Selective omission of road features based on mesh density for automatic map generalization. International Journal of Geographical Information Science, 23(8), 1013–1032. https://doi.org/10.1080/13658810802070730
  • Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematics, 1(1), 269–271. https://doi.org/10.1007/bf01386390
  • Gedicke, S., Oehrlein, J., & Haunert, J.-H. (2021). Aggregating land-use polygons considering line features as separating map elements. Cartography and Geographic Information Science, 48(2), 124–139. https://doi.org/10.1080/15230406.2020.1851613
  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. Geo Journal, 69(4), 211–221. https://doi.org/10.1007/s10708-007-9111-y
  • Grubbs, F. E. (1948). On estimating precision of measuring instruments and product variability. Journal of the American Statistical Association, 43(242), 243–264. https://doi.org/10.1080/01621459.1948.10483261
  • Guo, Q. (1998). Study on progressive approach to graphic generalization of linear feature. Journal of Wuhan Technical University of Surveying & Mapping, 23(1), 52–56.
  • Guo, Q., Wang, X., & Liu, J. (2012). Progressive combination of polygon groups. Geomatics and Information Science of Wuhan University, 37(2), 220–223. https://doi.org/10.13203/j.whugis2012.02.020
  • Hart, P. E., Nilsson, N. J., & Raphael, B. (1972). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 28–29. https://doi.org/10.1109/TSSC.1968.300136
  • Haunert, J.-H., Dilo, A., & Oosterom, P. V. (2009). Constrained set-up of the tGAP structure for progressive vector data transfer. Computers & Geosciences, 35(11), 2191–2203. https://doi.org/10.1016/j.cageo.2008.11.002
  • Haunert, J.-H., & Wolff, A. (2010). Area aggregation in map generalisation by mixed-integer programming. International Journal of Geographical Information Science, 24(12), 1871–1897. https://doi.org/10.1080/13658810903401008
  • Huang, L., Meijers, M., Suba, R., & Oosterom, P. V. (2016). Engineering web maps with gradual content zoom based on streaming vector data. Isprs Journal of Photogrammetry and Remote Sensing, 114, 274–293. https://doi.org/10.1016/j.isprsjprs.2015.11.011
  • Huimin, L., Wenke, H., Jianbo, T., Yan, S., & Min, D. (2020). A method for recognizing building clusters by considering functional features of buildings. Acta Geodaetica et Cartographica Sinica, 49(5), 622. https://doi.org/10.11947/j.AGCS.2020.20190222
  • Hu, T., Yang, J., Li, X., & Gong, P. (2016). Mapping urban land use by using Landsat images and open social data. Remote. Sensing, 8(2), 151. https://doi.org/10.3390/rs8020151
  • Jie, W., Qingsheng, G., Xiaoyan, W., & Peng, L. (2012). An improved algorithm for combination of land-use data. Geomatics and Information Science of Wuhan University, 37(9), 1116–1119. http://ch.whu.edu.cn/en/article/id/329
  • Liu, X., & Long, Y. (2016). Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environment and Planning B: Planning and Design, 43(2), 341–360. https://doi.org/10.1177/0265813515604767
  • Li, C., Yin, Y., Liu, X.-L., & Wu, P. (2018). An automated processing method for agglomeration areas. ISPRS International Journal of Geo-Information, 7(6), 204. https://doi.org/10.3390/ijgi7060204
  • Li, C., Yin, Y., Wu, P., & Wu, W. (2021). An area merging method in map generalization considering typical characteristics of structured geographic objects. Cartography and Geographic Information Science, 48(3), 210–224. https://doi.org/10.1080/15230406.2020.1863862
  • Luan, X., Yang, B., & Li, Q. (2014). A mixed integer programming model of block aggregation for grid pattern maintenance in urban network. Acta Geodaetica et Cartographica Sinica, 43(4), 426–434. https://doi.org/10.13485/j.cnki.11-2089.2014.0063
  • Moore, E. F. (1959). The shortest path through a maze. Proc. of the International Symposium on the Theory of Switching, Part II, Harvard University Press, 285–292.
  • Oosterom, P. V. (2005). Variable-scale topological data structures suitable for progressive data transfer: The GAP- face tree and GAP-edge forest. Cartography and Geographic Information Science, 32(4), 331–345. https://doi.org/10.1559/152304005775194782
  • Peng, D. (2019). An optimization-based approach for continuous map generalization. Julius-Maximilians-Universität Würzburg. https://doi.org/10.25972/WUP-978-3-95826-105-1
  • Pohl, I. (1973). The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem solving. Proceedings of the 3rd international joint conference on Artificial intelligence, Stanford, USA.
  • Rock, I., & Palmer, S. (1990). The legacy of Gestalt psychology. Scientific American, 263(6), 84–91. https://doi.org/10.1038/SCIENTIFICAMERICAN1290-84
  • Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
  • Schwering, A. (2008). Approaches to semantic similarity measurement for geo‐spatial data: A survey. Transactions in Gis, 12(1), 5–29. https://doi.org/10.1111/j.1467-9671.2008.01084.x
  • Sester, M., & Brenner, C. (2005). Continuous generalization for visualization on small mobile devices. International Symposium on Spatial Data Handing. https://doi.org/10.1007/3-540-26772-7_27
  • Shen, Y., Ai, T., Li, W., Yang, M., & Feng, Y. (2019). A polygon aggregation method with global feature preservation using superpixel segmentation. Computers, Environment and Urban Systems, 75, 117–131. https://doi.org/10.1016/j.compenvurbsys.2019.01.009
  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234–240. https://doi.org/10.2307/143141
  • Touya, G. (2010). A road network selection process based on data enrichment and structure detection. Transactions in Gis, 14(5), 595–614. https://doi.org/10.1111/j.1467-9671.2010.01215.x
  • Van Kreveld, M. (2001). Smooth generalization for continuous zooming. Proc. 20th Intl. Geographic Conference Beijing (China), 2180–2185.
  • Wang, Z., Ma, D., Sun, D., Zhang, J., & Yang, J. (2021). Identification and analysis of urban functional area in Hangzhou based on OSM and POI data. PLOS ONE, 16(5), e0251988. https://doi.org/10.1371/journal.pone.0251988
  • Wang, D., Qian, H., & Zhao, Y. (2022). Review and prospect: Management, multi-scale transformation and representation of geospatial data. Geo-Information Science, 24(12), 2265–2281. https://doi.org/10.12082/dqxxkx.2022.220163
  • Wu, P., Zhang, S., Li, H., Dale, P., Ding, X., & Lu, Y. (2019). Urban parcel grouping method based on urban form and functional connectivity characterisation. ISPRS International Journal of Geo-Information, 8(6), 282. https://doi.org/10.3390/ijgi8060282
  • Xue, B., Li, J., Xiao, X., Xie, X., Lu, C., Ren, W., & Jiang, L. (2019). Overview of man-land relationship research based on POI data: Theory, method and application. Geogr Geo-Inf Sci, 35(6), 51–60. https://doi.org/10.3969/j.issn.1672-0504.2019.06.009
  • Yang, B., Luan, X., & Li, Q. (2010). An adaptive method for identifying the spatial patterns in road networks. Computers Environment & Urban Systems, 34(1), 40–48. https://doi.org/10.1016/j.compenvurbsys.2009.10.002
  • Yang, B., Luan, X., & Li, Q. (2011). Generating hierarchical strokes from urban street networks based on spatial pattern recognition. International Journal of Geographical Information Science, 25(12), 2025–2050. https://doi.org/10.1080/13658816.2011.570270
  • Yoshida, H., & Omae, M. (2005). An approach for analysis of urban morphology: Methods to derive morphological properties of city blocks by using an urban landscape model and their interpretations. Computers Environment & Urban Systems, 29(2), 223–247. https://doi.org/10.1016/j.compenvurbsys.2004.05.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.