2,162
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Debris properties and mass-balance impacts on adjacent debris-covered glaciers, Mount Rainier, USA

ORCID Icon, ORCID Icon & ORCID Icon
Pages 70-83 | Received 19 Sep 2018, Accepted 05 Feb 2019, Published online: 08 Apr 2019

References

  • Allstadt, K., D. Shean, A. Campbell, M. Fahnestock, and S. Malone. 2015. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington using terrestrial radar interferometry. The Cryosphere 9:2219–35. doi:10.5194/tc-9-2219-2015.
  • Anderson, L., and R. Anderson. 2016. Modeling debris-covered glaciers: Response to steady debris deposition. The Cryosphere 10:1105–24. doi:10.5194/tc-10-1105-2016.
  • Banerjee, A. 2017. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate. The Cryosphere 11:133–38. doi:10.5194/tc-11-133-2017.
  • Basnett, S., A. V. Kulkarni, and T. Bolch. 2013. The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology 59:1035–46. doi:10.3189/2013JoG12J184.
  • Beason, S. 2017. Change in Glacial Extent at Mount Rainier National Park from 1896 to 2015. Natural Resource Report NPS/MORA/NRR-2017/1472, 98.
  • Brock, B. W., C. Mihalcea, M. P. Kirkbride, G. Diolaiuti, M. E. J. Cutler, and C. Smiraglia. 2010. Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. Journal of Geophysical Research 115:D09106. doi:10.1029/2009JD013224.
  • Brun, F., P. Buri, E. S. Miles, P. Wagnon, J. Steiner, E. Berthier, P. Kraaijenbrink, W. W. Immerzeel, and F. Pellicciotti. 2016. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry. Journal of Glaciology 62:684–95. doi:10.1017/jog.2016.54.
  • Burbank, D. W. 1981. A chronology of late Holocene glacier fluctuations on Mount Rainier, Washington. Arctic and Alpine Research 13:369–86. doi:10.2307/1551049.
  • Burbank, D. W. 1982. Correlations of climate, mass balances, and glacial fluctuations at Mount Rainier, Washington, U.S.A., since 1850. Arctic and Alpine Research 14:137–48. doi:10.2307/1551112.
  • Collier, E., F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush. 2015. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. The Cryosphere 9:1617–32. doi:10.5194/tc-9-1617-2015.
  • Crandell, D. R., and R. K. Fahnestock. 1965. Rockfalls and avalanches from Little Tahoma Peak on Mount Rainier, Washington. In Geological Survey Bulletin 1221-A, 37. Washington, DC: Government Printing Office.
  • Dobhal, D. P., M. Mehta, and D. Srivastava. 2013. Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. Journal of Glaciology 59:961–71. doi:10.3189/2013JoG12J180.
  • Fickert, T., D. Friend, and F. Grüninger. 2007. Did debris-covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces. Arctic, Antarctic, and Alpine Research 39:245–57. doi:10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2.
  • Foster, L. A., B. W. Brock, M. E. J. Cutler, and F. Diotri. 2012. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. Journal of Glaciology 58:677–91. doi:10.3189/2012JoG11J194.
  • Fountain, A., H. Basagic, C. Cannon, M. Devisser, M. Hoffman, J. Kargel, G. J. Leonard, K. Thornekroft, and S. Wilson. 2014. Glaciers and perennial snowfields of the US Cordillera. In Global land ice measurements from space, ed. J. Kargel, G. Leonard, M. Bishop, A. Kaab, and B. Raup, 385–408. Berlin: Springer.
  • Fyffe, C. L., T. D. Reid, B. W. Brock, M. P. Kirkbride, G. Diolaiuti, C. Smiraglia, and F. Diotri. 2014. A distributed energy-balance melt model of an alpine debris-covered glacier. Journal of Glaciology 60:587–602. doi:10.3189/2014JoG13J148.
  • Gardelle, J., E. Berthier, and Y. Arnaud. 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5:1–4. doi:10.1038/ngeo1450.
  • Hock, R. 2005. Glacier melt: A review of processes and their modelling. Progress in Physical Geography 29:362–91. doi:10.1191/0309133305pp453ra.
  • Juen, M., C. Mayer, A. Lambrecht, H. Han, and S. L.-T. Liu. 2014. Impact of varying debris cover thickness on ablation: A case study for Koxkar Glacier in the Tien Shan. The Cryosphere 8:377–86. doi:10.5194/tc-8-377-2014.
  • Kraaijenbrink, P., J. Shea, M. Litt, J. Steiner, D. Treichler, and W. W. Immerzeel. 2018. Mapping surface temperatures on a debris-covered glacier with an unmanned aerial vehicle. Frontiers in Earth Science 6. doi:10.3389/feart.2018.00064.
  • Krüger, J., and K. H. Kjær. 2000. De-icing progression of ice-cored moraines in a humid, subpolar climate, Kotlujokull, Iceland. Holocene 6:737–47. doi:10.1191/09596830094980.
  • Mattson, L. E., and J. S. Gardner. 1989. Energy exchanges and ablation rates on the debris-covered Rakhiot Glacier, Pakistan. Zeitschrift Fur Gletscherkunde Und Glazialgeologie 25:17–32.
  • Mihalcea, C., C. Mayer, G. Diolaiuti, C. D. Agata, C. Smiraglia, A. Lambrecht, E. Vuillermoz, and G. Tartari. 2008. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology 48:49–57. doi:10.3189/172756408784700680.
  • Mihalcea, C., C. Mayer, G. Diolaiuti, A. Lambrecht, C. Smiraglia, and G. Tartari. 2006. Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology 43:292–300. doi:10.3189/172756406781812104.
  • Miles, E., F. Pellicciotti, I. Willis, and J. Steiner. 2016. Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal. Annals of Glaciology 57:29–40. doi:10.3189/2016AoG71A421.
  • Mills, H. H. 1978. Some characteristics of glacial sediments of Mount Rainier, Washington. Journal of Sedimentary Research 48:1345–56. doi:10.1306/212F7685-2B24-11D7-8648000102C1865D.
  • Moore, P. L. 2018. Stability of supraglacial debris. Earth Surface Processes and Landforms 43:285–97. doi:10.1002/esp.4244.
  • Nakawo, M., and G. Young. 1981. Field experiments to determine the effect of a debris layer on ablation of glacier ice. Annals of Glaciology 2:85–91. doi:10.3189/172756481794352432.
  • Nicholson, L., and D. I. Benn. 2013. Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surface Processes and Landforms 38:490–501. doi:10.1002/esp.3299.
  • Nicholson, L., M. McCarthy, H. Pritchard, and I. Willis. 2018. Supraglacial debris thickness variability: Impact on ablation and relation to terrain properties. The Cryosphere Discussions 1–30. doi:10.5194/tc-2018-83.
  • Nicholson, L. I., and D. I. Benn. 2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology 52:463–70. doi:10.3189/172756506781828584.
  • Norris, R. 1994. Seismicity of rockfalls and avalanches at three Cascade Range volcanoes: Implications for seismic detection of hazardous mass movements. Bulletin of the Seismological Society of America 84:1925–39.
  • Nylen, T. H. 2004. Spatial and temporal variations of glaciers (1913-1994) on Mt. Rainier and the relation with climate. M.S. Thesis, Portland State University.
  • Østrem, G. 1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler 41:228–30. doi:10.1080/20014422.1959.11907953.
  • Paul, F., S. Winsvold, A. Kääb, T. Nagler, and G. Schwaizer. 2016. Glacier remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sensing 8:575. doi:10.3390/rs8070575.
  • Quincey, D., M. Smith, D. Rounce, A. Ross, O. King, and C. Watson. 2017. Evaluating morphological estimates of the aerodynamic roughness of debris covered glacier ice. Earth Surface Processes and Landforms 42:2541–53. doi:10.1002/esp.4198.
  • Rasmussen, L., and J. Wenger. 2009. Upper-air model of summer balance on Mount Rainier, USA. Journal of Glaciology 55:619–24. doi:10.3189/002214309789471012.
  • Reznichenko, N. V., T. R. H. Davies, and D. J. Alexander. 2011. Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology 132:327–38. doi:10.1016/j.geomorph.2011.05.019.
  • Richardson, S. D., and J. M. Reynolds. 2000. An overview of glacial hazards in the Himalayas. Quaternary International 65:31–47. doi:10.1016/S1040-6182(99)00035-X.
  • Riedel, J. L., and M. A. Larrabee. 2011. Mt. Rainier National Park Glacier Mass Balance Monitoring Annual Report, Water Year 2009. North Coast and Cascades Network, National Park Service. Natural Resource Stewardship and Science, Natural Resource Technical Report NPS/NCCN/NRTR-2011/484, Fort Collins, Colorado.
  • Riedel, J., and M. Larrabee. 2015. Mount Rainier National Park Glacier mass balance monitoring annual report, water year 2011 North Coast and Cascades Network Natural resource data series NPS/NCCN/NRDS-2015/752. Fort Collins, CO: National Park Service.
  • Rounce, D. R., and D. C. Mckinney. 2014. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. The Cryosphere 8:1317–29. doi:10.5194/tc-8-1317-2014.
  • Schauwecker, S., M. Rohrer, C. Huggel, A. Kulkarni, A. Ramanathan, N. Salzmann, M. Stoffel, and B. Brock. 2015. Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology 61:675–88. doi:10.3189/2015JoG14J102.
  • Scherler, D., B. Bookhagen, and M. R. Strecker. 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience 4:156–59. doi:10.1038/ngeo1068.
  • Sisson, T., J. Robinson, and D. Swinney. 2011. Whole-edifice ice volume change AD 1970 to 2007/2008 at Mount Rainier, Washington, based on LiDAR surveying. Geology 39:639–42. doi:10.1130/G31902.1.
  • Steiner, J. F., and F. Pellicciotti. 2016. Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya. Annals of Glaciology 57:295–307. doi:10.3189/2016AoG71A066.
  • Takeuchi, Y., R. Kayastha, and M. Nakawo. 2000. Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season. In Debris-covered glaciers, 264. ed. A. G. Fountain, M. Nakawo, and C. F. Raymond, 53–61. Wallingford, UK: IAHS Publ.
  • Thompson, S., D. I. Benn, J. Mertes, and A. Luckman. 2016. Stagnation and mass loss on a Himalayan debris-covered glacier: Processes, patterns and rates. Journal of Glaciology 62:467–85. doi:10.1017/jog.2016.37.
  • Vacco, D. A., R. B. Alley, and D. Pollard. 2010. Glacial advance and stagnation caused by rock avalanches. Earth and Planetary Science Letters 294:123–30. doi:10.1016/j.epsl.2010.03.019.
  • Wang, M., Z. Zhang, G. He, G. Wang, T. Long, and Y. Peng. 2016. An enhanced single-channel algorithm for retrieving land surface temperature from Landsat series data. Journal of Geophysical Research: Atmospheres 121:11,712–11,722. doi:10.1002/2016JD025270.
  • Zhang, Y., K. Fujita, S. Liu, Q. Liu, and T. Nuimura. 2011. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology 57:1147–57. doi:10.3189/002214311798843331.