1,731
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Chemical weathering in a moraine at the ice sheet margin at Kangerlussuaq, western Greenland

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 440-459 | Received 20 Feb 2019, Accepted 19 Aug 2019, Published online: 26 Sep 2019

References

  • Aciego, S. M., E. I. Stevenson, and C. A. Arendt. 2015. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland. Earth and Planetary Science Letters 424:51–58. doi:10.1016/j.epsl.2015.05.017.
  • Anderson, N. J., R. Harriman, D. B. Ryves, and S. T. Patrick. 2001. Dominant factors controlling variability in the ionic composition of west Greenland lakes. Arctic, Antarctic, and Alpine Research 33:418–25. doi:10.2307/1552551.
  • Anderson, N. J., and C. A. Stedmon. 2007. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biology 52:280–89. doi:10.1111/j.1365-2427.2006.01688.x.
  • Anderson, S. P., J. I. Drever, C. D. Frost, and P. Holden. 2000. Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta 64:1173–89. doi:10.1016/S0016-7037(99)00358-0.
  • Andrews, M. G., and A. D. Jacobson. 2018. Controls on the solute geochemistry of subglacial discharge from the Russell Glacier, Greenland Ice Sheet determined by radiogenic and stable Sr isotope ratios.  Geochimica et Cosmochimica Acta 239:312–29. doi:10.1016/j.gca.2018.08.004.
  • Andrews, M. G., A. D. Jacobson, M. R. Osburn, and T. M. Flynn. 2018. Dissolved carbon dynamics in meltwaters from the Russell Glacier, Greenland Ice Sheet. Journal of Geophysical Research: Biogeosciences. doi:10.1029/2018JG004458.
  • Anesio, A. M., S. Lutz, N. A. M. Chrismas, and L. G. Benning. 2017. The microbiome of glaciers and ice sheets. NPJ Biofilms and Microbiomes 3:10. doi:10.1038/s41522-017-0019-0.
  • Ansari, A. H. 2016. Stable isotopic evidence for anaerobic maintained sulphate discharge in a polythermal glacier. Polar Science 10:24–35. doi:10.1016/j.polar.2016.01.001.
  • Arvidson, R. S., I. E. Ertan, J. E. Amonette, and A. Luttge. 2003. Variation in calcite dissolution rates: A fundamental problem? Geochimica et Cosmochimica Acta 67:1623–34. doi:10.1016/S0016-7037(02)01177-8.
  • Bhatia, M. P., S. B. Das, K. Longnecker, M. A. Charette, and E. B. Kujawinski. 2010. Molecular characterization of dissolved organic matter associated with the Greenland Ice Sheet. Geochimica et Cosmochimica Acta 74:3768–84. doi:10.1016/j.gca.2010.03.035.
  • Bhatia, M. P., S. B. Das, L. Xu, M. A. Charette, J. L. Wadham, and E. B. Kujawinski. 2013. Organic carbon export from the Greenland Ice Sheet. Geochimica et Cosmochimica Acta 109:329–44. doi:10.1016/j.gca.2013.02.006.
  • Bisson, K. M., K. A. Welch, S. A. Welch, J. M. Sheets, W. B. Lyons, J. S. Levy, and A. G. Fountain. 2015. Patterns and processes of salt efflorescences in the McMurdo Region, Antarctica. Arctic, Antarctic, and Alpine Research 47:407–25. doi:10.1657/AAAR0014-024.
  • Bottrell, S. H., and M. Tranter. 2002. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrological Processes 16:2363–68. doi:10.1002/(ISSN)1099-1085.
  • Bray, A. W., E. H. Oelkers, S. Bonneville, D. Wolff-Boenisch, N. J. Potts, G. Fones, and L. G. Benning. 2015. The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et Cosmochimica Acta 164:127–45. doi:10.1016/j.gca.2015.04.048.
  • Brown, G. H., M. Tranter, and M. J. Sharp. 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes 10:579–97. doi:10.1002/(ISSN)1099-1085.
  • Burpee, B. T., D. Anderson, and J. E. Saros. 2018. Assessing ecological effects of glacial meltwater on lakes fed by the Greenland Ice Sheet: The role of nutrient subsidies and turbidity. Arctic, Antarctic, and Alpine Research 50 (1):S100019. doi:10.1080/15230430.2017.1420953.
  • Campeau, A., M. B. Wallin, R. Giesler, S. Löfgren, C.-M. Mörth, S. Schiff, J. J. Venkiteswaran, and K. Bishop. 2017. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Scientific Reports 7:9158. doi:10.1038/s41598-017-09049-9.
  • Cappelen, J. (Ed.). 2014. Weather observations from Greenland 1958-2013 - observation data with description. DMI Technical Report 14-08, Danish Metereological Institute, Copenhagen, Denmark. https://www.dmi.dk/publikationer/.
  • Cappelen, J. (Ed.). 2016. Weather observations from Greenland 1958-2015 - observation data with description. DMI Report 16-08, Danish Metereological Institute, Copenhagen, Denmark. https://www.dmi.dk/publikationer/.
  • Carrivick, J. L., J. C. Yde, N. T. Knudsen, and C. Kronborg. 2018. Ice-dammed lake and ice-margin evolution during the Holocene in the Kangerlussuaq Area of West Greenland. Arctic, Antarctic, and Alpine Research 50:S100005. doi:10.1080/15230430.2017.1420854.
  • Chandra, A. P., and A. R. Gerson. 2011. Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps. Geochimica et Cosmochimica Acta 75 (20):6239–54. doi:10.1016/j.gca.2011.08.005.
  • Claesson Liljedahl, L., A. Kontula, J. Harper, J.-O. Näslund, J.-O. Selroos, P. Pitkänen, I. Puigdomenech, Hobbs, M. Follin, S. Hirschorn, et al. 2016. The Greenland analogue project: Final report. SKB-TR-14-13, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden. www.skb.com/publications/.
  • Colombani, J. 2008. Measurement of the pure dissolution rate constant of a mineral in water. Geochimica et Cosmochimica Acta 72:5634–40. doi:10.1016/j.gca.2008.09.007.
  • Cooper, R. J., J. L. Wadham, M. Tranter, R. Hodgkins, and N. E. Peters. 2002. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. Journal of Hydrology 269:208–23. doi:10.1016/S0022-1694(02)00279-2.
  • Deuerling, K. M., J. B. Martin, E. E. Martin, J. Abermann, S. M. Myreng, D. Petersen, and Å. K. Rennermalm. 2019. Chemical weathering across the western foreland of the Greenland Ice Sheet.  Geochimica et Cosmochimica Acta 245:426–40. doi:10.1016/j.gca.2018.11.025.
  • Deuerling, K. M., J. B. Martin, E. E. Martin, and C. A. Scribner. 2018. Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, West Greenland. Journal of Hydrology 556:220–32. doi:10.1016/j.jhydrol.2017.11.002.
  • Drake, H., J. Suksi, E.-L. Tullborg, and Y. Lahaye. 2017. Quaternary redox transitions in deep crystalline rock fractures at the western margin of the Greenland Ice Sheet. Applied Geochemistry 76:196–209. doi:10.1016/j.apgeochem.2016.12.001.
  • Drever, J. I. 1997. The geochemistry of natural waters. 3rd ed. Upper Saddle River, NJ: Prentice Hall, Inc.
  • Eichinger, F., and H. N. Waber. 2013. Matrix porewater in crystalline rocks: Extraction and analysis. NWMO TR-2013-23, Nuclear Waste Management Organization, Toronto, Ontario.
  • Faure, G. 1991. Principles and applications of inorganic geochemistry: A comprehensive textbook for geology students. New Jersey: Prentice-Hall, Inc.
  • Föllmi, K. B., K. Arn, R. Hosein, T. Adatte, and P. Steinmann. 2009. Biogeochemical weathering in sedimentary chronosequences of the Rhône and Oberaar Glaciers (Swiss Alps): Rates and mechanisms of biotite weathering. Geoderma 151:270–81. doi:10.1016/j.geoderma.2009.04.012.
  • Forman, S. L., L. Marín, C. Van Der Veen, C. Tremper, and B. Csatho. 2007. Little Ice Age and neoglacial landforms at the Inland Ice margin, Isunguata Sermia, Kangerlussuaq, west Greenland. Boreas 36:341–51. doi:10.1080/00173130601173301.
  • Fowler, R. A., J. E. Saros, and C. L. Osburn. 2018. Shifting DOC concentration and quality in the freshwater lakes of the Kangerlussuaq region: An experimental assessment of possible mechanisms. Arctic, Antarctic, and Alpine Research 50 (1):S100013. doi:10.1080/15230430.2018.1436815.
  • Garrels, R. M., and F. T. MacKenzie. 1967. Origin of the chemical compositions of some springs and lakes. In Equilibrium concepts in natural water systems, ed. W. Stumm, Vol. 67, 222–42. Advances in chemistry series. Washington, D.C.: American Chemical Society. doi:10.1021/ba-1967-0067.ch010.
  • Gillon, M., F. Barbecot, E. Gibert, C. Plain, J.-A. Corcho-Alvarado, and M. Massault. 2012. Controls on 13C and 14C variability in soil CO2. Geoderma 189–190:431–41. doi:10.1016/j.geoderma.2012.06.004.
  • Graly, J. A., J. I. Drever, and N. F. Humphrey. 2017. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems: Carbon balance in subglacial systems. Global Biogeochemical Cycles 31:709–27. doi:10.1002/2016GB005425.
  • Graly, J. A., N. F. Humphrey, and J. T. Harper. 2016. Chemical depletion of sediment under the Greenland Ice Sheet. Earth Surface Processes and Landforms 41:1922–36. doi:10.1002/esp.3960.
  • Graly, J. A., N. F. Humphrey, C. M. Landowski, and J. T. Harper. 2014. Chemical weathering under the Greenland Ice sheet. Geology 42:551–54. doi:10.1130/G35370.1.
  • Hagedorn, B., and B. Hasholt. 2004. Hydrology, geochemistry and Sr Isotopes in solids and solutes of the meltwater from Mittivakkat Gletscher, SE Greenland. Hydrology Research 35:369–80. doi:10.2166/nh.2004.0028.
  • Harper, J., A. Hubbard, T. Ruskeeniemi, L. Claesson Liljedahl, A. Kontula, M. Hobbs, J. Brown, A. Dirkson, C. Dow, S. Doyle, et al. 2016. The Greenland Analogue Project: Data and processes. SKB R-14-13, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. www.skb.com/publications/.
  • Hawkings, J. R., J. L. Wadham, L. G. Benning, K. R. Hendry, M. Tranter, A. Tedstone, P. Nienow, and R. Raiswell. 2017. Ice sheets as a missing source of silica to the polar oceans. Nature Communications 8:14198. doi:10.1038/ncomms14198.
  • Hawkings, J. R., J. L. Wadham, M. Tranter, E. Lawson, A. Sole, T. Cowton, A. J. Tedstone, I. Bartholomew, P. Nienow, D. Chandler, et al. 2015. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochemical Perspectives Letters 1:94–104. doi:10.7185/geochemlet.1510.
  • Hawkings, J. R., J. L. Wadham, M. Tranter, R. Raiswell, L. G. Benning, P. J. Statham, A. Tedstone, P. Nienow, K. Lee, and J. Telling. 2014. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications 5 (1–8):3929. doi:10.1038/ncomms4929.
  • Henkemans, E. 2016. Geochemical characterization of groundwaters, surface waters and water-rock interaction in an area of continuous permafrost adjacent to the Greenland Ice Sheet, Kangerlussuaq, Southwest Greenland. Waterloo, Ontario: University of Waterloo. https://uwspace.uwaterloo.ca/handle/10012/10193.
  • Henkemans, E., S. K. Frape, T. Ruskeeniemi, N. J. Anderson, and M. Hobbs. 2018. A landscape isotopic approach to the geochemical characterization of lakes in the Kangerlussuaq Region, West Greenland. Arctic, Antarctic, and Alpine Research 50 (1):S100018. doi:10.1080/15230430.2017.1420863.
  • Henriksen, N., A. K. Higgins, F. Kalsbeek, and T. C. R. Pulvertaft. 2009. Greenland from Archaean to Quaternary. Descriptive text to the 1995 geological map of Greenland 1:2 500 000. 2nd ed.  Copenhagen, Denmark: Geological Survey of Denmark and Greenland Bulletin 18.
  • Hindshaw, R. S., T. H. E. Heaton, E. S. Boyd, M. R. Lindsay, and E. T. Tipper. 2016. Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments. Chemical Geology 420:37–50. doi:10.1016/j.chemgeo.2015.11.004.
  • Hindshaw, R. S., J. Rickli, J. Leuthold, J. Wadham, and B. Bourdon. 2014. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochimica et Cosmochimica Acta 145:50–71. doi:10.1016/j.gca.2014.09.016.
  • Hodgkins, R., M. Tranter, and J. A. Dowdeswell. 1998. The hydrochemistry of runoff from a 'cold-based' glacier in the high arctic (Scott Turnerbreen, Svalbard). Hydrological Processes 12:87–103. doi:10.1002/(SICI)1099-1085(199801)12:1<87::AID-HYP565>3.0.CO;2-C.
  • Jacobson, A. D., J. D. Blum, P. Chamberlain, M. A. Poage, and V. F. Sloan. 2002. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age.  Geochimica et Cosmochimica Acta 66:13–27. doi:10.1016/S0016-7037(01)00755-4.
  • Johansson, E., S. Berglund, T. Lindborg, J. Petrone, D. van As, L.-G. Gustafsson, J.-O. Näslund, and H. Laudon. 2015. Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, West Greenland - presentation of a new multi-parameter data set. Earth System Science Data 7:93–108. doi:10.5194/essd-7-93-2015.
  • Kristiansen, S. M., J. C. Yde, T. Gómez Bárcena, B. H. Jakobsen, J. Olsen, and N. T. Knudsen. 2013. Geochemistry of groundwater in front of a warm-based glacier in southeast Greenland. Geografiska Annaler: Series A, Physical Geography 95:97–108. doi:10.1111/geoa.12003.
  • Langmuir, D. 1997. Aqueous environmental geochemistry. Upper Saddle River, New Jersey: Prentice-Hall, Inc.
  • Lawson, E. C., J. L. Wadham, M. Tranter, M. Stibal, G. P. Lis, C. E. H. Butler, J. Laybourn-Parry, P. Nienow, D. Chandler, and P. Dewsbury. 2014. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11:4015–28. doi:10.5194/bg-11-4015-2014.
  • Lehn, G. O., A. D. Jacobson, T. A. Douglas, J. W. McClelland, A. J. Barker, and M. S. Khosh. 2017. Constraining seasonal active layer dynamics and chemical weathering reactions occurring in North Slope Alaskan watersheds with major ion and isotope (δ34SSO4, δ13CDIC, 87Sr/86Sr, δ44/40Ca, and δ44/42Ca) measurements. Geochimica et Cosmochimica Acta 217:399–420. doi:10.1016/j.gca.2017.07.042.
  • Leng, M. J., and N. J. Anderson. 2003. Isotopic variation in modern lake waters from western Greenland. The Holocene 13:605–11. doi:10.1191/0959683603hl620rr.
  • Levy, L. B., M. A. Kelly, P. A. Applegate, J. A. Howley, and R. A. Virginia. 2018. Middle to late Holocene chronology of the western margin of the Greenland Ice Sheet: A comparison with Holocene temperature and precipitation records. Arctic, Antarctic, and Alpine Research 50:S100004. doi:10.1080/15230430.2017.1414477.
  • Lindborg, T., J. Rydberg, M. Tröjbom, S. Berglund, E. Johansson, A. Löfgren, P. Saetre, S. Nordén, G. Sohlenius, E. Andersson, et al. 2016. Biogeochemical data from terrestrial and aquatic ecosystems in a periglacial catchment, West Greenland. Earth System Science Data 8:439–59. doi:10.5194/essd-8-439-2016.
  • Linhoff, B. S. 2016. Seasonal and interannual variability in the hydrology and geochemistry of an outlet glacier of the Greenland Ice Sheet. Cambridge: Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/103256.
  • Marty, N. C. M., F. Claret, A. Lassin, J. Tremosa, P. Blanc, B. Madé, E. Giffaut, B. Cochepin, and C. Tournassat. 2015. A database of dissolution and precipitation rates for clay-rocks minerals. Applied Geochemistry 55:108–18. doi:10.1016/j.apgeochem.2014.10.012.
  • McNutt, R. H. 2000. Strontium Isotopes. In Environmental tracers in subsurface hydrology, ed. P. G. Cook and A. L. Herczeg, 233–260. Boston: Kluwer Academic Publishers.
  • Northington, R. M., and J. E. Saros. 2016. Factors controlling methane in Arctic lakes of southwest Greenland. PLoS One 11 (7):e0159642. doi:10.1371/journal.pone.0159642.
  • Osburn, C. L., N. J. Anderson, C. A. Stedmon, M. E. Giles, E. J. Whiteford, T. J. McGenity, A. J. Dumbrell, and G. J. C. Underwood. 2017. Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient. Journal of Geophysical Research: Biogeosciences 122:3431–45. doi:10.1002/2017JG003999.
  • Palandri, J. L., and Y. K. Kharaka. 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open File Report 2004-1068, U.S. Geological Survey, Menlo Park, California.
  • Parkhurst, D. L., and C. A. J. Appelo. 2013. Description of input and examples for PHREEQC version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497, U.S. Geological Survey, Denver, Colorado. http://pubs.usgs.gov/tm/06/a43.
  • Polsenaere, P., and G. Abril. 2012. Modelling CO2 degassing from small acidic rivers using water PCO2, DIC and δ13C-DIC data. Geochimica et Cosmochimica Acta 91:220–39. doi:10.1016/j.gca.2012.05.030.
  • Refsnider, K. A., G. H. Miller, M. L. Fogel, B. Fréchette, R. Bowden, J. T. Andrews, and G. L. Farmer. 2014. Subglacially precipitated carbonates record geochemical interactions and pollen preservation at the base of the Laurentide Ice Sheet on central Baffin Island, Eastern Canadian Arctic. Quaternary Research 81:94–105. doi:10.1016/j.yqres.2013.10.014.
  • Rickli, J., R. S. Hindshaw, J. Leuthold, J. L. Wadham, K. W. Burton, and D. Vance. 2017. Impact of glacial activity on the weathering of Hf Isotopes - observations from Southwest Greenland.  Geochimica et Cosmochimica Acta 215:295–316. doi:10.1016/j.gca.2017.08.005.
  • Robinson, Z. P., I. J. Fairchild, and B. Spiro. 2009. The sulphur isotope and hydrochemical characteristics of Skeiðarársandur, Iceland: Identification of solute sources and implications for weathering processes. Hydrological Processes 23:2212–24. doi:10.1002/hyp.7368.
  • Ruskeeniemi, T., J. Engström, J. Lehtimäki, H. Vanhala, K. Korhonen, A. Kontula, L. Claesson Liljedahl, J.-O. Näslund, and R. Pettersson. 2018. Subglacial permafrost evidencing re-advance of the Greenland Ice Sheet over frozen ground. Quaternary Science Reviews 199:174–87. doi:10.1016/j.quascirev.2018.09.002.
  • Rydberg, J., T. Lindborg, G. Sohlenius, N. Reuss, J. Olsen, and H. Laudon. 2016. The importance of eolian input on lake-sediment geochemical composition in the dry proglacial landscape of western Greenland. Arctic, Antarctic, and Alpine Research 48:93–109. doi:10.1657/AAAR0015-009.
  • Ryu, J.-S., and A. D. Jacobson. 2012. CO2 evasion from the Greenland Ice Sheet: A new carbon-climate feedback. Chemical Geology 320–321:80–95. doi:10.1016/j.chemgeo.2012.05.024.
  • Saros, J. E., C. L. Osburn, R. M. Northington, S. D. Birkel, J. D. Auger, C. A. Stedmon, and N. J. Anderson. 2015. Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland. Geophysical Research Letters 42:6703–09. doi:10.1002/2015GL065075.
  • Scholz, H., and M. Baumann. 1997. An ‘open system pingo’ near Kangerlussuaq (Søndre Strømfjord), West Greenland. Geology of Greenland Survey Bull 176:104–08.
  • Scribner, C. A., E. E. Martin, J. B. Martin, K. M. Deuerling, D. F. Collazo, and A. T. Marshall. 2015. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland. Geochimica et Cosmochimica Acta 170:157–72. doi:10.1016/j.gca.2015.08.008.
  • Skidmore, M., M. Tranter, S. Tulaczyk, and B. Lanoil. 2010. Hydrochemistry of ice stream beds - Evaporitic or microbial effects? Hydrological Processes 24:517–23.
  • Stevenson, E. I., M. S. Fantle, S. B. Das, H. M. Williams, and S. M. Aciego. 2017. The iron isotopic composition of subglacial streams draining the Greenland Ice Sheet. Geochimica et Cosmochimica Acta 213:237–54. doi:10.1016/j.gca.2017.06.002.
  • Szynkiewicz, A., M. Modelska, S. Buczyński, D. M. Borrok, and J. P. Merrison. 2013. The polar sulfur cycle in the Werenskioldbreen, Spitsbergen: Possible implications for understanding the deposition of sulfate minerals in the North Polar Region of Mars. Geochimica et Cosmochimica Acta 106:326–43. doi:10.1016/j.gca.2012.12.041.
  • Torres, M. A., N. Moosdorf, J. Hartmann, J. F. Adkins, and A. J. West. 2017. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proceedings of the National Academy of Sciences 114:8716–21. doi:10.1073/pnas.1702953114.
  • Tranter, M., M. J. Sharp, H. R. Lamb, G. H. Brown, B. P. Hubbard, and I. C. Willis. 2002. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland - a new model. Hydrological Processes 16:959–93. doi:10.1002/hyp.309.
  • Tranter, M., and J. L. Wadham. 2014. Geochemical weathering in glacial and proglacial environments. In Treatise on geochemistry, Vol. 7, 2nd ed., 157–73. Oxford, UK: Elsevier. doi:10.1016/B978-0-08-095975-7.00505-2.
  • Uetake, J., T. Naganuma, M. B. Hebsgaard, H. Kanda, and S. Kohshima. 2010. Communities of algae and cyanobacteria on glaciers in West Greenland. Polar Science 4:71–80. doi:10.1016/j.polar.2010.03.002.
  • Usher, C. R., C. A. Cleveland, D. R. Strongin, and M. A. Schoonen. 2004. Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: An in situ horizontal attenuated total reflectance infrared spectroscopy isotope study. Environmental Science & Technology 38:5604–06. doi:10.1021/es0494003.
  • Usher, C. R., K. W. Paul, J. Narayansamy, J. D. Kubicki, D. L. Sparks, M. A. A. Schoonen, and D. R. Strongin. 2005. Mechanistic aspects of pyrite oxidation in an oxidizing gaseous environment: An in situ HATR−IR isotope study. Environmental Science & Technology 39:7576–84. doi:10.1021/es0506657.
  • Van Gool, J. A. M., J. N. Connelly, M. Marker, and F. C. Mengel. 2002. The Nagssugtoqidian Orogen of West Greenland: Tectonic evolution and regional correlations from a West Greenland perspective. Canadian Journal of Earth Sciences 39:665–86. doi:10.1139/e02-027.
  • Van Stempvoort, D. R., and H. R. Krouse. 1993. Controls of δ18O in sulfate. Review of experimental data and application to specific environments. In Environmental geochemistry of sulfide oxidation, ed. C. N. Alpers and D. W. Blowes, Vol. 550, 446–80. Washington, DC: American Chemical Society, ACS Symposium Series.
  • Van Tatenhove, F. G. M., J. J. M. van der Meer, and E. A. Koster. 1996. Implications for deglaciation chronology from new AMS age determinations in central West Greenland. Quaternary Research 45:245–53. doi:10.1006/qres.1996.0025.
  • Wadham, J. L., R. J. Cooper, M. Tranter, and S. Bottrell. 2007. Evidence for widespread anoxia in the proglacial zone of an Arctic glacier. Chemical Geology 243:1–15. doi:10.1016/j.chemgeo.2007.04.010.
  • Wadham, J. L., M. Tranter, A. J. Hodson, R. Hodgkins, S. Bottrell, R. Cooper, and R. Raiswell. 2010. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: Implications for subice sheet biogeochemistry. Journal of Geophysical Research 115 (F04017):1–16. doi:10.1029/2009JF001602.
  • Wimpenny, J., K. W. Burton, R. H. James, A. Gannoun, F. Mokadem, and S. R. Gíslason. 2011. The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland. Earth and Planetary Science Letters 304:260–69. doi:10.1016/j.epsl.2011.02.008.
  • Wimpenny, J., R. H. James, K. W. Burton, A. Gannoun, F. Mokadem, and S. R. Gíslason. 2010. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland Rivers. Earth and Planetary Science Letters 290:427–37. doi:10.1016/j.epsl.2009.12.042.
  • Wynn, P. M., A. Hodson, and T. Heaton. 2006. Chemical and isotopic switching within the subglacial environment of a high Arctic glacier. Biogeochemistry 78:173–93. doi:10.1007/s10533-005-3832-0.
  • Wynn, P. M., D. J. Morrell, H. Tuffen, P. Barker, F. S. Tweed, and R. Burns. 2015. Seasonal release of anoxic geothermal meltwater from the Katla volcanic system at Sólheimajökull, Iceland. Chemical Geology 396:228–38. doi:10.1016/j.chemgeo.2014.12.026.
  • Yde, J. C., K. W. Finster, R. Raiswell, J. P. Steffensen, J. Heinemeier, J. Olsen, H. P. Gunnlaugsson, and O. B. Nielsen. 2010. Basal ice microbiology at the margin of the Greenland Ice Sheet. Annals of Glaciology 51 (56):71–79. doi:10.3189/172756411795931976.
  • Yde, J. C., N. T. Knudsen, B. Hasholt, and A. B. Mikkelsen. 2014. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. Journal of Hydrology 519:2165–79. doi:10.1016/j.jhydrol.2014.10.018.
  • Young, N. E., and J. P. Briner. 2015. Holocene evolution of the Western Greenland Ice Sheet: Assessing geophysical ice-sheet models with geological reconstructions of ice-margin change. Quaternary Science Reviews 114:1–17. doi:10.1016/j.quascirev.2015.01.018.
  • Zolkos, S., S. E. Tank, and S. V. Kokelj. 2018. Mineral weathering and the permafrost carbon-climate feedback. Geophysical Research Letters 45:9623–32. doi:10.1029/2018GL078748.