10,629
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Climate of the Marrakech High Atlas, Morocco: Temperature lapse rates and precipitation gradient from piedmont to summits

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 78-95 | Received 19 Jul 2021, Accepted 21 Feb 2022, Published online: 01 Apr 2022

References

  • Abatzoglou, J. T., B. J. Hatchett, P. Fox-Hughes, A. Gershunov, and N. J. Nauslar. 2021. Global climatology of synoptically-forced downslope winds. International Journal of Climatology 41:31–50. doi:10.1002/joc.6607.
  • Ait Brahim, Y., H. Cheng, A. Sifeddine, J. A. Wassenburg, F. W. Cruz, M. Khodri, and L. Bouchaou. 2017. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth and Planetary Science Letters 476:1–10. doi:10.1016/j.epsl.2017.07.045.
  • Baba, M. W., S. Gascoin, C. Kinnard, A. Marchane, and L. Hanich. 2019. Effect of digital elevation model resolution on the simulation of the snow cover evolution in the High Atlas. Water Resources Research 55:5360–78. doi:10.1029/2018WR023789.
  • Barry, R. G. 1978. H.-B. de Saussure: The first mountain meteorologist. Bulletin of the American Meteorological Society 59:702–05. doi:10.1175/1520-0477(1978)059<0702:HBDSTF>2.0.CO;2.
  • Barry, R. G. 1992. Mountain climatology and past and potential future climatic changes in mountain regions: A review. Mountain Research and Development 12:71–86. doi:10.2307/3673749.
  • Barry, R. G., and R. J. Chorley. 2009. Atmosphere, weather, and climate, 516. 9th ed. Abingdon: Routledge.
  • Bell, B. A., W. J. Fletcher, P. D. Hughes, H. L. Cornelissen, D. Fink, and A. Rhoujjati. 2022. Palynological evidence from a sub-alpine marsh of enhanced Little Ice Age snowpack in the Marrakech High Atlas, North Africa. Vegetation History and Archaeobotany 31:49–66. doi:10.1007/s00334-021-00837-y.
  • Benabid, A. 1982. Bref aperçu sur la zonation altitudinale de la végétation climacique du Maroc. Ecologia Mediterranea 8:301–15. doi:10.3406/ecmed.1982.1956.
  • Bernard, J., and M. Reille. 1987. Nouvelles analyses polliniques dans l’Atlas de Marrakech, Maroc. Pollen et Spores 29:225–40.
  • Blandford, T. R., K. S. Humes, B. J. Harshburger, B. C. Moore, V. P. Walden, and H. Ye. 2008. Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. Journal of Applied Meteorology and Climatology 47:249–61. doi:10.1175/2007JAMC1565.1.
  • Bormann, K. J., S. Westra, J. P. Evans, and M. F. McCabe. 2013. Spatial and temporal variability in seasonal snow density. Journal of Hydrology 484:63–73. doi:10.1016/j.jhydrol.2013.01.032.
  • Born, K., A. H. Fink, P. Knippertz. 2010. Meteorological processes influencing the weather and climate of Morocco. In Impacts of global change on the Hydrological Cycle in West and Northwest Africa, ed. P. Speth, M. Christoph, M. Diekkruger, B. M, A. H. Fink, T. Goldbach, and M. Rossler, 150–63. Berlin: Springer. doi:10.1007/978-3-642-12957-5.
  • Born, K., A. H. Fink, and H. Paeth. 2008a. Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Meteorologische Zeitschrift 17:533–51. doi:10.1127/0941-2948/2008/0313.
  • Born, K., K. Piecha, A. H. Fink, O. Schulz, M. Judex. 2008b. Shifting climate zones in the northwestern Maghreb. In IMPETUS Atlas Morocco, ed. O. Schulz and M. Judex, 13–14. Germany: Department of Geography, University of Bonn.
  • Boudhar, A., G. Boulet, L. Hanich, J. E. Sicart, and A. Chehbouni. 2016. Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas. Hydrological Sciences Journal 61:931–43. doi:10.1080/02626667.2014.965173.
  • Boudhar, A., L. Hanich, G. Boulet, B. Duchemin, B. Berjamy, and A. Chehbouni. 2009. Evaluation du modèle snowmelt runoff dans le Haut Atlas Marocain en utilisant deux estimations des surfaces enneigées. Hydrological Sciences Journal 54:1094–113. doi:10.1623/hysj.54.6.1094.
  • Brunt, D. 1933. The adiabatic lapse-rate for dry and saturated air. Quarterly Journal of the Royal Meteorological Society 59:351–60. doi:10.1002/qj.49705925204.
  • Collados-Lara, A. J., E. Pardo-Igúzquiza, D. Pulido-Velazquez, and J. Jiménez-Sánchez. 2018. Precipitation fields in an alpine Mediterranean catchment: Inversion of precipitation gradient with elevation or undercatch of snowfall? International Journal of Climatology 38:3565–78. doi:10.1002/joc.5517.
  • Córdova, M., R. Célleri, C. J. Shellito, J. Orellana-Alvear, A. Abril, and G. Carrillo-Rojas. 2016. Near-surface air temperature lapse rate over complex terrain in the southern Ecuadorian Andes: Implications for temperature mapping. Arctic, Antarctic, and Alpine Research 48:673–84. doi:10.1657/AAAR0015-077.
  • Cortemiglia, G. C. 1989. Validitadell’elaborazione statistica nel calcolo del gradiente termico verticale in valle Scrivia. Julia Dertona 68:63–84.
  • Coulter, J. D. 1967. Mountain Climate. New Zealand Ecological Society 14:40–57.
  • Couvreur, G. 1966. Les formations périglaciaires du Haut Atlas central marocain. Revue de Géographie Du Maroc 10:47–50.
  • Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33:140–58. doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.
  • de Jong, C., S. Cappy, M. Finckh, and D. Funk. 2008. A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Engineering Geology 99:228–38. doi:10.1016/j.enggeo.2007.11.021.
  • De Podesta, M., S. Bell, and R. Underwood. 2018. Air temperature sensors: Dependence of radiative errors on sensor diameter in precision metrology and meteorology. Metrologia 55:229–44. doi:10.1088/1681-7575/aaaa52.
  • Diao, X., A. Dinar, T. Roe, and Y. Tsur. 2008. A general equilibrium analysis of conjunctive ground and surface water use with an application to Morocco. Agricultural Economics 38:117–35. doi:10.1111/j.1574-0862.2008.00287.x.
  • Dorji, U., J. E. Olesen, P. K. Bøcher, and M. Solveig Seidenkrantz. 2016. Spatial variation of temperature and precipitation in Bhutan and links to vegetation and land cover. Mountain Research and Development 36:66–79. doi:10.1659/MRD-JOURNAL-D-15-00020.1.
  • Dozier, J., E. H. Bair, and R. E. Davis. 2016. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 3:461–74. doi:10.1002/wat2.1140.
  • Eklund, L., C. Romankiewicz, M. Brandt, M. Doevenspeck, and C. Samimi. 2016. Data and methods in the environment-migration nexus: A scale perspective. Erde 147:139–52. doi:10.12854/erde-147-10.
  • Esper, J., E. R. Cook, and F. H. Schweingruber. 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–53. doi:10.1126/science.1066208.
  • Fathi, N., L. Bounoua, and M. Messouli. 2019. A satellite assessment of the urban heat island in Morocco. Canadian Journal of Remote Sensing 45:26–41. doi:10.1080/07038992.2019.1601007.
  • Fiddes, J., and S. Gruber. 2014. TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain. Geoscientific Model Development 7:387–405. doi:10.5194/gmd-7-387-2014.
  • Fink, A. H., M. Christoph, K. Born, T. Brucher, K. Piecha, S. Pohle, O. Schulz, and V. Ermert. 2010. Climate. In Impacts of global change on the hydrological cycle in West and Northwest Africa, ed. P. Speth and B. Diekkruger, 54–58. Heidelberg, Germany: Springer.
  • Griffith, B. D., and T. B. McKee. 2000. Rooftop and ground standard temperatures: A comparison of physical differences. Climatology Report 00-2.
  • Gugerli, R., M. Guidicelli, M. Gabella, M. Huss, and N. Salzmann. 2021. Multi-sensor analysis of monthly gridded snow precipitation on alpine glaciers. Advances in Science and Research 18:7–20. doi:10.5194/asr-18-7-2021.
  • Haeberli, W. 1985. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen Der Versuchsanstalt Für Wasserbau. Hydrologie Und Glaziologie Der ETH Zürich 77:1–142.
  • Hannah, G., P. D. Hughes, and P. L. Gibbard. 2017. Pleistocene plateau ice fields in the High Atlas, Morocco. Geological Society, London, Special Publications 433:25–53. doi:10.1144/SP433.12.
  • He, Y., and K. Wang. 2020. Contrast patterns and trends of lapse rates calculated from near-surface air and land surface temperatures in China from 1961 to 2014. Science Bulletin 65:1217–24. doi:10.1016/j.scib.2020.04.001.
  • Houston, A. L., and D. Niyogi. 2007. The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Monthly Weather Review 135:3013–32. doi:10.1175/MWR3449.1.
  • Hughes, P. D. 2018. Little Ice Age glaciers and climate in the Mediterranean mountains: A new analysis. Geographical Research Letters 44:15–45. doi:10.18172/cig.3362.
  • Hughes, P. D., D. Fink, W. J. Fletcher. 2021. Late Pleistocene glaciers and climate in the High Atlas, North Africa. In Untangling the Quaternary Period—A Legacy of Stephen C. Porter, ed. R. B. Waitt, G. D. Thackray, and A. R. Gillespie, eds., pp.155–174. Boulder: The Geological Society of America, Inc. doi:10.1130/2020.2548(08).
  • Hughes, P. D., D. Fink, Á. Rodés, C. R. Fenton, and T. Fujioka. 2018. 10Be and 36Cl exposure ages and palaeoclimatic significance of glaciations in the High Atlas, Morocco. Quaternary Science Reviews 180:193–213. doi:10.1016/j.quascirev.2017.11.015.
  • Hughes, P. D., W. J. Fletcher, B. A. Bell, R. J. Braithwaite, H. L. Cornelissen, D. Fink, and A. Rhoujjati. 2020. Late Pleistocene glaciers to present-day snowpatches: A review and research recommendations for the Marrakech High Atlas. Mediterranean Geoscience Reviews 2:163–84. doi:10.1007/s42990-020-00027-4.
  • Immerzeel, W. W., A. F. Lutz, M. Andrade, A. Bahl, H. Biemans, T. Bolch, and J. E. M. Baillie. 2020. Importance and vulnerability of the world’s water towers. Nature 577:364–69. doi:10.1038/s41586-019-1822-y.
  • Jarlan, L., S. Khabba, S. Er-Raki, M. Le Page, L. Hanich, Y. Fakir, and R. Escadafal. 2015. Remote sensing of water resources in semi-arid Mediterranean areas: The joint international laboratory TREMA. International Journal of Remote Sensing 36:4879–917. doi:10.1080/01431161.2015.1093198.
  • Jevons, W. S. 1861. On the deficiency of rain in an elevated rain-gauge, as caused by wind. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 22:421–33. doi:10.1080/14786446108643180.
  • Kattel, D. B., T. Yao, W. Yang, Y. Gao, and L. Tian. 2015. Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. International Journal of Climatology 35:4431–43. doi:10.1002/joc.4297.
  • Knippertz, P. 2003. Tropical–extratropical interactions causing precipitation in Northwest Africa: Statistical analysis and seasonal Variations. Monthly Weather Review 131:3069–76. doi:10.1175/1520-0493(2003)131<3069:TICPIN>2.0.CO;2.
  • Knippertz, P., M. Christoph, and P. Speth. 2003. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorology and Atmospheric Physics 83:67–88. doi:10.1007/s00703-002-0561-y.
  • Kuhn, M. caret: Classification and Regression Training. v6.0-90, R. 2021. https://CRAN.R-project.org/package=caret
  • Lagouvardos, K., V. Kotroni, A. Bezes, I. Koletsis, T. Kopania, S. Lykoudis, N. Mazarakis, K. Papagiannaki, and S. Vougioukas. 2017. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geoscience Data Journal 4:4–16. doi:10.1002/gdj3.44.
  • Lamb, P. J., M. E. L. Hamly, and D. H. Portis. 1997. North-Atlantic Oscillation. Geo Observateur 7:103–13.
  • Legates, D. R., and C. J. Willmott. 1990. Mean seasonal and spatial variability in global surface air temperature. Theoretical and Applied Climatology 41:11–21. doi:10.1007/BF00866198.
  • Li, X., L. Wang, D. Chen, K. Yang, B. Xue, and L. Sun. 2013. Near-surface air temperature lapse rates in the mainland China during 1962-2011. Journal of Geophysical Research Atmospheres 118:7505–15. doi:10.1002/jgrd.50553.
  • Lionello, P., P. Malanotte-Rizzoli, R. Boscolo, P. Alpert, V. Artale, L. Li, J. Luterbacher, W. May, R. Trigo, M. Tsimplis, et al. 2006. The Mediterranean climate: An overview of the main characteristics and issues. Developments in Earth and Environmental Sciences 4:1–26. doi:10.1016/S1571-9197(06)80003-0.
  • Lute, A. C., and J. T. Abatzoglou. 2021. Best practices for estimating near-surface air temperature lapse rates. International Journal of Climatology 41:E110–E125. doi:10.1002/joc.6668.
  • Marchane, A., Y. Tramblay, L. Hanich, D. Ruelland, and L. Jarlan. 2017. Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrological Sciences Journal 62:979–95. doi:10.1080/02626667.2017.1283042.
  • Marshall, S. J., M. J. Sharp, D. O. Burgess, and F. S. Anslow. 2007. Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. International Journal of Climatology 27:385–98. doi:10.1002/joc.1396.
  • Meløysund, V., B. Leira, K. V. Høiseth, and K. R. Lisø. 2007. Predicting snow density using meteorological data. Meteorological Applications 14:413–23. doi:10.1002/met.40.
  • Messerli, B., and M. Winiger. 1992. Climate, environmental change, and resources of the African mountains from the Mediterranean to the equator. Mountain Research & Development 12:315–36. doi:10.2307/3673683.
  • Michalet, R. 1991. Une approche synthétique biopédoclimatique des montagnes méditerranéennes: Exemple du Maroc septentrional. Thesis, Université Joseph Fourier (Grenoble). January 1.
  • Minder, J. R., P. W. Mote, and J. D. Lundquist. 2010. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research Atmospheres 115:1–13. doi:10.1029/2009JD013493.
  • N’da, A. B., L. Bouchaou, B. Reichert, L. Hanich, Y. Ait Brahim, A. Chehbouni, and J. L. Michelot. 2016. Isotopic signatures for the assessment of snow water resources in the Moroccan High Atlas mountains: Contribution to surface and groundwater recharge. Environmental Earth Sciences 75:1–11. doi:10.1007/s12665-016-5566-9.
  • Navarro-Serrano, F., J. I. López-Moreno, C. Azorin-Molina, E. Alonso-González, M. Tomás-Burguera, A. Sanmiguel-Vallelado, and S. M. Vicente-Serrano. 2018. Estimation of near-surface air temperature lapse rates over continental Spain and its mountain areas. International Journal of Climatology 38:3233–49. doi:10.1002/joc.5497.
  • Nicholson, S. E., C. Funk, and A. H. Fink. 2018. Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change 165:114–27. doi:10.1016/J.GLOPLACHA.2017.12.014.
  • Noin, D. 1963. Types de temps d’été au Maroc. Annales de Géographie 72:1–12.
  • O.R.S.T.O.M (Office de la Recherche Scientifique et Technique Outre-Mer). 1976. Hydrologie du bassin du Tensift. Paris: Rabat.
  • Ozenda, P. 1975. Sur les étages de végétation. Documents Cartographiques Ecologiques XVI:1–32.
  • Pepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, and D. Q. Yang. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5:424–30. doi:10.1038/nclimate2563.
  • Pepin, N., and M. Losleben. 2002. Climate change in the Colorado Rocky Mountains: Free air versus surface temperature trends. International Journal of Climatology 22:311–29. doi:10.1002/joc.740.
  • Pepin, N., and J. D. Lundquist. 2008. Temperature trends at high elevations: Patterns across the globe. Geophysical Research Letters 35:1–6. doi:10.1029/2008GL034026.
  • Pepin, N., and D. J. Seidel. 2005. A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research 110:D03104. doi:10.1029/2004JD005047.
  • Pouclet, A., A. Aarab, A. Fekkak, M. Benharref. 2007. Geodynamic evolution of the northwestern Paleo-Gondwanan margin in the Moroccan Atlas at the Precambrian-Cambrian boundary. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, ed. U. Linnemann, R. D. Nance, P. Kraft, and G. Zulauf, Vol. 423. Boulder: Geological Society of America. doi:10.1130/2007.2423(02).
  • R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Rabin, R. M., S. Stadler, P. J. Wetzel, D. J. Stensrud, and M. Gregory. 1990. Observed effects of landscape variability on convective clouds. Bulletin - American Meteorological Society 71:272–80. doi:10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2.
  • Rangwala, I., and J. R. Miller. 2012. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change 114:527–47. doi:10.1007/s10584-012-0419-3.
  • Rhanem, M. 2011. Aridification du climat régional et remontée de la limite inférieure du cèdre de l’Atlas (Cedrus atlantica Manetti) aux confins de la plaine de Midelt (Maroc). Physio-Géo 5:143–65. doi:10.4000/physio-geo.1983.
  • Roche, M. 1963. Hydrologie de surface. Paris: O.R.S.T.O.M. 430 pp.
  • Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas. 2003. Improving snowfall forecasting by diagnosing snow density. Weather and Forecasting 18:264–87. doi:10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2.
  • Rolland, C. 2003. Spatial and seasonal variations of air temperature lapse rates in alpine regions. Journal of Climate 16:1032–46. doi:10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2.
  • Schulz, O. 2007. Analyse schneehydrologischer Prozesse und Schneekartierung im Einzugsgebiet des Oued M’Goun, Zentraler Hoher Atlas (Marokko). Universitäts-und Landesbibliothek, Bonn, Germany.
  • Shen, Y., Y. Shen, J. Goetz, and A. Brenning. 2016. Spatial‐temporal variation of near‐surface temperature lapse rates over the Tianshan Mountains, Central Asia. Journal of Geophysical Research: Atmospheres 121:14,006–14,017. doi:10.1002/2016JD025711.
  • Simonneaux, V., L. Hanich, G. Boulet, and S. Thomas. 2008. Modelling runoff in the Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J. Trends over the last decades. In 13th IWRA World Water Congress, Montpellier, France.
  • Stone, P. H., and J. H. Carlson. 1979. Atmospheric lapse rate regimes and their parameterization. Journal of the Atmospheric Sciences 36:415–23. doi:10.1175/1520-0469(1979)036<0415:ALRRAT>2.0.CO;2.
  • Trigo, R. M., T. J. Osborn, and J. M. Corte-Real. 2002. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Research 20:9–17. doi:10.3354/CR020009.
  • Troll, C. 1973. High mountain belts between the polar caps and the equator: Their definition and lower limit. Arctic and Alpine Research 5:19–27.
  • Tuel, A., A. Chehbouni, and E. A. B. Eltahir. 2008a. Dynamics of seasonal snowpack over the High Atlas. Journal of Hydrology 125657. doi:10.1016/j.jhydrol.2020.125657.
  • Tuel, A., and E. A. B. Eltahir. 2018. Seasonal precipitation forecast over Morocco. Water Resources Research 54:9118–30. doi:10.1029/2018WR022984.
  • Tuel, A., N. E. Moçayd, M. D. Hasnaoui, and E. A. B. Eltahir. 2008b. Future projections of High Atlas snowpack and runoff under climate change [Preprint]. Hydrology and Earth System Sciences.
  • Vieira, G., C. Mora, and A. Faleh. 2017. New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco). Cryosphere 11:1691–705. doi:10.5194/tc-11-1691-2017.
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner. 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43:1–13. doi:10.1029/2006WR005653.
  • Wortmann, M., T. Bolch, C. Menz, J. Tong, and V. Krysanova. 2018. Comparison and correction of high-mountain precipitation data based on glacio-hydrological modeling in the Tarim river headwaters (High Asia). Journal of Hydrometeorology 19:777–801. doi:10.1175/JHM-D-17-0106.1.
  • Zkhiri, W., Y. Tramblay, L. Hanich, L. Jarlan, and D. Ruelland. 2019. Spatiotemporal characterization of current and future droughts in the High Atlas basins (Morocco). Theoretical and Applied Climatology 135:593–605. doi:10.1007/s00704-018-2388-6.