7,730
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intercomparing atmospheric reanalysis products for hydrodynamic and wave modeling of extreme events during the open-water Arctic season

, , , , , & show all
Pages 125-146 | Received 21 Aug 2021, Accepted 25 Mar 2022, Published online: 10 May 2022

References

  • Alday, M., M. Accensi, F. Ardhuin, and G. Dodet. 2021. A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Model 166:101848. doi:10.1016/j.ocemod.2021.101848.
  • Appendini, C. M., A. Torres-Freyermuth, F. Oropeza, P. Salles, J. López, and E. T. Mendoza. 2013. Wave modeling performance in the Gulf of Mexico and Western Caribbean: Wind reanalyses assessment. Applied Ocean Research 39:20–30. doi:10.1016/j.apor.2012.09.004.
  • Asplin, M. G., D. B. Fissel, T. N. Papakyriakou, and D. G. Barber. 2015. Synoptic climatology of the Southern Beaufort Sea troposphere with comparisons to surface winds. Atmosphere-Ocean 53:264–81. doi:10.1080/07055900.2015.1013438.
  • Atkinson, J., D. Ph, S. C. Hagen, D. Ce, D. Wre, S. Zou, P. Bacopoulos, S. Medeiros, and J. Weishampel. 2011. Deriving frictional parameters and performing historical validation for an ADCIRC storm surge model of the Florida Gulf Coast. Florida Watershed 4:22–27.
  • Ballinger, T. J., and S. C. Sheridan. 2014. Associations between circulation pattern frequencies and sea ice minima in the western Arctic. International Journal of Climatology 34:1385–94. doi:10.1002/joc.3767.
  • Barnhart, K. R., I. Overeem, and R. S. Anderson. 2014. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8:1777–99. doi:10.5194/tc-8-1777-2014.
  • Basu, S., X. Zhang, and Z. Wang. 2019. A modeling investigation of northern hemisphere extratropical cyclone activity in spring: The linkage between extreme weather and Arctic sea ice forcing. Climate 7:9–11. doi:10.3390/cli7020025.
  • Bennett, V. C. C., and R. P. Mulligan. 2017. Evaluation of surface wind fields for prediction of directional ocean wave spectra during Hurricane Sandy. Coast Engineering 125:1–15. doi:10.1016/j.coastaleng.2017.04.003.
  • Bento, A. R., N. Salvação, and G. Carlos Soares. 2018. Validation of a wave forecast system for Galway Bay. Journal of Operational Oceanography 11:112–24. doi:10.1080/1755876X.2018.1470454.
  • Bertin, X., K. Li, A. Roland, and J. Bidlot. 2015. The contribution of short-waves in storm surges: Two case studies in the Bay of Biscay. Continental Shelf Research 96:1–15. doi:10.1016/j.csr.2015.01.005.
  • Bloemendaal, N., S. Muis, R. J. Haarsma, M. Verlaan, M. Irazoqui Apecechea, H. de Moel, P. J. Ward, and J. C. J. H. Aerts. 2019. Global modeling of tropical cyclone storm surges using high-resolution forecasts. Climate Dynamics 52:5031–44. doi:10.1007/s00382-018-4430-x.
  • Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans 104:7649–66. doi:10.1029/98JC02622.
  • Campos, R. M., and C. Guedes Soares. 2017. Assessment of three wind reanalyses in the North Atlantic Ocean. Journal of Operational Oceanography 10:30–44. doi:10.1080/1755876X.2016.1253328.
  • Cao, X., R. Wu, and M. Bi. 2018. Contributions of different time-scale variations to tropical cyclogenesis over the western North Pacific. Journal of Climate 31:3137–53. doi:10.1175/JCLI-D-17-0519.1.
  • Casas-Prat, M., X. L. Wang, and N. Swart. 2018. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123:66–85. doi:10.1016/j.ocemod.2017.12.003.
  • Chen, W. B., H. Chen, S. C. Hsiao, C. H. Chang, and L. Y. Lin. 2019. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Engineering 188:106260. doi:10.1016/j.oceaneng.2019.106260.
  • Chu, D., J. Zhang, Y. Wu, X. Jiao, and S. Qian. 2019. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea. Estuarine, Coastal and Shelf Science 231:106460. doi:10.1016/j.ecss.2019.106460.
  • Danielson, S. L., O. Ahkinga, C. Ashjian, E. Basyuk, L. W. Cooper, L. Eisner, E. Farley, K. B. Iken, J. M. Grebmeier, L. Juranek, et al. 2020. Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves. Deep-Sea Research Part II: Topical Studies in Oceanography 177. doi:10.1016/j.dsr2.2020.104781.
  • Day, J. J., M. M. Holland, and K. I. Hodges. 2018. Seasonal differences in the response of Arctic cyclones to climate change in CESM1. Climate Dynamics 50:3885–903. doi:10.1007/s00382-017-3767-x.
  • de Lima, A. d. S., A. Khalid, T. Miesse, F. Cassalho, C. Ferreira, M. E. G. Scherer, and J. Bonetti. 2020. Hydrodynamic and waves response during storm surges on the Southern Brazilian coast: A hindcast study. Water 12(12–3538):. https://doi.org/10.3390/w12123538.
  • Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone. 2011. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Engineering 58:45–65. doi:10.1016/j.coastaleng.2010.08.001.
  • Dullaart, J. C. M., S. Muis, N. Bloemendaal, and J. C. J. H. Aerts. 2020. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Climate Dynamics 54:1007–21. doi:10.1007/s00382-019-05044-0.
  • Egbert, G. D., and S. Y. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19:183–204.
  • Erikson, L. H., R. T. McCall, A. van Rooijen, and B. Norris. 2015. Hindcast storm events in the Bering Sea for the St. Alaska: Lawrence Island and Unalakleet Regions. USGS Open-File Rep. doi:10.3133/ofr20151193.
  • Fang, Z., P. T. Freeman, C. B. Field, and K. J. Mach. 2018. Reduced sea ice protection period increases storm exposure in Kivalina, Alaska. Arctic Science 4:525–37. doi:10.1139/as-2017-0024.
  • Fujiwara, M., J. S. Wright, G. L. Manney, L. J. Gray, J. Anstey, T. Birner, S. Davis, E. P. Gerber, V. Lynn Harvey, M. I. Hegglin, et al. 2017. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics 17:1417–52. doi:10.5194/acp-17-1417-2017.
  • Garzon, J. L., and C. M. Ferreira. 2016. Storm surge modeling in large estuaries: Sensitivity analyses to parameters and physical processes in the Chesapeake Bay. Journal of Marine Science and Engineering 4. doi:10.3390/jmse4030045.
  • Garzon, J. L., C. M. Ferreira, and R. Padilla-Hernandez. 2018. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay. Ocean Dynamics 68:91–107. doi:10.1007/s10236-017-1120-x.
  • GEBCO Bathymetric Compilation Group. 2019. The GEBCO_2019 Grid - a continuous terrain model of the global oceans and land. Liverpool: British Oceanographic Data Centre, National Oceanography Centre, NERC.
  • Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, et al. 2017. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate 30 (14):5419–54. doi: 10.1175/JCLI-D-16-0758.1
  • GLCC. 2020. Global Land Cover Characterization; United States Geological Survey – Earth Resources Observation and Science. Reston, VA: Earth Resources Observation and Science (EROS) Center. doi:10.5066/F7GB230D.
  • Gramcianinov, C. B., R. M. Campos, R. de Camargo, K. I. Hodges, C. Guedes Soares, and P. L. da Silva Dias. 2020. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Engineering 216:108111. doi:10.1016/j.oceaneng.2020.108111.
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Nicolas, C. Peubey, R. Radu, M. Bonavita, D. Dee, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146 (730):1999–2049. doi:10.1002/qj.3803.
  • Hogan, T. F., and T. E. Rosmond. 1991. The description of the navy operational global atmospheric prediction system’s spectral forecast model. mon. Weather Review 119:1786–815.
  • Intergovernmental Panel on Climate Change. 2014. Contribution of working groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. R. K. Pachauri and L. A. Meyer. eds., Geneva, Switzerland: IPCC. doi:10.2307/1881805
  • Joyce, B. R., W. J. Pringle, D. Wirasaet, J. J. Westerink, A. J. Van der Westhuysen, R. Grumbine, and J. Feyen. 2019. High resolution modeling of western Alaskan tides and storm surge under varying sea ice conditions. Ocean Model 141:101421. doi:10.1016/j.ocemod.2019.101421.
  • Khon, V. C., I. I. Mokhov, F. A. Pogarskiy, A. Babanin, K. Dethloff, A. Rinke, and H. Matthes. 2014. Wave heights in the 21st century Arctic Ocean simulated with a regional climate model. Geophysical Research Letters 41:2956–61. doi:10.1002/2014GL059847.
  • Kim, H. G., J. Y. Kim, and Y. H. Kang. 2018. Comparative evaluation of the third-generation reanalysis data for wind resource assessment of the southwestern offshore in South Korea. Atmosphere (Basel) 9. doi:10.3390/atmos9020073.
  • Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan 93:5–48. doi:10.2151/jmsj.2015-001.
  • Koyama, T., J. Stroeve, J. Cassano, and A. Crawford. 2017. Sea ice loss and Arctic cyclone activity from 1979 to 2014. Journal of Climate 30:4735–54. doi:10.1175/JCLI-D-16-0542.1.
  • Lakshmi, D. D., P. L. N. Murty, P. K. Bhaskaran, B. Sahoo, T. S. Kumar, S. S. C. Shenoi, and A. S. Srikanth. 2017. Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones. Ocean Engineering 131:135–48. doi:10.1016/j.oceaneng.2017.01.005.
  • Lavidas, G., V. Venugopal, and D. Friedrich. 2017. Sensitivity of a numerical wave model on wind re-analysis datasets. Dynamics of Atmospheres and Oceans 77:1–16. doi:10.1016/j.dynatmoce.2016.10.007.
  • Lee, M. H., and J. H. Kim. 2019. The role of synoptic cyclones for the formation of Arctic summer circulation patterns as clustered by self-organizing maps. Atmosphere (Basel) 10. doi:10.3390/atmos10080474.
  • Liu, Q., A. V. Babanin, S. Zieger, I. R. Young, and C. Guan. 2016. Wind and wave climate in the Arctic Ocean as observed by altimeters. Journal of Climate 29:7957–75. doi:10.1175/JCLI-D-16-0219.1.
  • Luettich, R., and J. Westerink. 1999. Implementation of the wave radiation stress gradient as a forcing for the ADCIRC hydrodynamic model: Upgrades and documentation for ADCIRC, version 34.12. Vicksburg, MS: US Army Corps Engineers. https://adcirc.org/wp-content/uploads/sites/2255/2018/11/1999_Luettich02.pdf
  • Luettich, R. A., Jr., J. J. Westerink, and N. W. Scheffner. 1992. ADCIRC: An advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, Dredging Research Program Technical Report DRP-92-6. Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station.
  • Marcos, M., J. Rohmer, M. I. Vousdoukas, L. Mentaschi, G. Le Cozannet, and A. Amores. 2019. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophysical Research Letters 46:4356–64. doi:10.1029/2019GL082599.
  • Mason, O. K., D. K. Salmon, and S. L. Ludwig. 1996. The periodicity of storm surges in the Bering Sea from 1898 to 1993, based on newspaper accounts. Climatic Change 34:109–23. doi:10.1007/BF00139256.
  • Mioduszewski, J., S. Vavrus, and M. Wang. 2018. Diminishing Arctic sea ice promotes stronger surface winds. Journal of Climate 31:8101–19. doi:10.1175/JCLI-D-18-0109.1.
  • Mori, N., T. Shimura, K. Yoshida, R. Mizuta, Y. Okada, M. Fujita, T. Khujanazarov, and E. Nakakita. 2019. Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model. Coastal Engineering Journal 61:295–307. doi:10.1080/21664250.2019.1586290.
  • Muller, H., L. Pineau-Guillou, D. Idier, and F. Ardhuin. 2014. Atmospheric storm surge modeling methodology along the French (Atlantic and English Channel) coast. Ocean Dynamics 64:1671–92. doi:10.1007/s10236-014-0771-0.
  • Murty, P. L. N., K. S. Srinivas, E. P. R. Rao, P. K. Bhaskaran, S. S. C. Shenoi, and J. Padmanabham. 2020. Improved cyclonic wind fields over the Bay of Bengal and their application in storm surge and wave computations. Applied Ocean Research 95:102048. doi:10.1016/j.apor.2019.102048.
  • Oliveira, T. C. A., E. Cagnin, and P. A. Silva. 2020. Wind-waves in the coast of mainland Portugal induced by post-tropical storms. Ocean Engineering 217. doi:10.1016/j.oceaneng.2020.108020.
  • Pandey, S., and A. D. Rao. 2019. Impact of approach angle of an impinging cyclone on generation of storm surges and its interaction with tides and wind waves. Journal of Geophysical Research: Oceans 124:7643–60. doi:10.1029/2019JC015433.
  • Qiao, W., J. Song, H. He, and F. Li. 2019. Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A: Dynamic Meteorology and Oceanography 71:1–20. doi:10.1080/16000870.2019.1657552.
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore. 2017. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environmental Research Letters 12. doi:10.1088/1748-9326/aa7def.
  • Roberts, K. J., W. J. Pringle, and J. J. Westerink. 2019. OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling. Geoscientific Model Development 12:1847–68. doi:10.5194/gmd-12-1847-2019.
  • Saha, S., S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y. T. Hou, H. Y. Chuang, M. Iredell, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate 27:2185–208. doi:10.1175/JCLI-D-12-00823.1.
  • Schaeffer, A., P. Garreau, A. Molcard, P. Fraunié, and Y. Seity. 2011. Influence of high-resolution wind forcing on hydrodynamic modeling of the Gulf of Lions. Ocean Dynamics 61:1823–44. doi:10.1007/s10236-011-0442-3.
  • Slivinski, L. C., G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, B. S. Giese, C. McColl, R. Allan, X. Yin, R. Vose, H. Titchner, et al. 2019. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society 145:2876–908. doi:10.1002/qj.3598.
  • Stabeno, P. J., J. D. Schumacher, and K. Ohtani. 2009. The physical oceanography of the Bering Sea: A summary of physical, chemical, and biological characteristics, and a synopsis of research on the Bering Sea. Geography 24:1–22.
  • Stopa, J. E., and K. F. Cheung. 2014. Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. doi:10.1016/j.ocemod.2013.12.006.
  • Tahir, Z. U. R., M. Azhar, M. Mumtaz, M. Asim, G. Moeenuddin, H. Sharif, and S. Hassan. 2020. Evaluation of the reanalysis surface solar radiation from NCEP, ECMWF, NASA, and JMA using surface observations for Balochistan, Pakistan. Journal of Renewable and Sustainable Energy 12. doi:10.1063/1.5135381.
  • Tamarin-Brodsky, T., and Y. Kaspi. 2017. Enhanced poleward propagation of storms under climate change. Nature Geoscience 10:908–13. doi:10.1038/s41561-017-0001-8.
  • Taylor, K. E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106:7183–92.
  • Thomson, J., and W. E. Rogers. 2014. Swell and sea in the emerging Arctic. Geophysical Research Letters 41:3136–40. doi:10.1002/2014GL059983.
  • Thuy, N. B., S. Kim, T. N. Anh, N. K. Cuong, P. T. Thuc, and L. R. Hole. 2020. The influence of moving speeds, wind speeds, and sea level pressures on after-runner storm surges in the Gulf of Tonkin, Vietnam. Oean Engineering 212:107613. doi:10.1016/j.oceaneng.2020.107613.
  • Torres, M. J., M. R. Hashemi, S. Hayward, M. Spaulding, I. Ginis, and S. T. Grilli. 2019. Role of hurricane wind models in accurate simulation of storm surge and waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 145. doi:10.1061/(ASCE)WW.1943-5460.0000496.
  • Vihma, T. 2014. Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics 35:1175–1214. doi:10.1007/s10712-014-9284-0.
  • Viitak, M., P. Avilez-Valente, A. Bio, L. Bastos, and I. Iglesias. 2020. Evaluating wind datasets for wave hindcasting in the NW Iberian Peninsula coast. Journal of Operational Oceanography 1–14. doi:10.1080/1755876X.2020.1738121.
  • Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma. 2020. Extreme weather and climate events in northern areas: A review. Earth-Science Reviews 209:103324. doi:10.1016/j.earscirev.2020.103324.
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh. 2013. Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dynamics 40:2775–800. doi:10.1007/s00382-012-1450-9.
  • Waseda, T., A. Webb, K. Sato, J. Inoue, A. Kohout, B. Penrose, and S. Penrose. 2018. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Scientific Reports 8:1–9. doi:10.1038/s41598-018-22500-9.
  • Wicks, A. J., and D. E. Atkinson. 2017. Identification and classification of storm surge events at Red Dog Dock, Alaska, 2004–2014. Natural Hazard 86:877–900. doi:10.1007/s11069-016-2722-1.
  • Wu, G., F. Shi, J. T. Kirby, B. Liang, and J. Shi. 2018. Modeling wave effects on storm surge and coastal inundation. Coast Engineering 140:371–82. doi:10.1016/j.coastaleng.2018.08.011.
  • Yang, F., H. L. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord. 2006. Evaluation of the NCEP global forecast system at the ARM SGP site. Monthly Weather Review 134:3668–90. doi:10.1175/MWR3264.1.
  • Zhang, M., W. Perrie, and Z. Long. 2019. Springtime North Pacific oscillation and summer sea ice in the Beaufort Sea. Climate Dynamics 53:671–86. doi:10.1007/s00382-019-04627-1.
  • Zhou, C., Y. He, and K. Wang. 2018. On the suitability of current atmospheric reanalyses for regional warming studies over China. Atmospheric Chemistry and Physics 18:8113–36. doi:10.5194/acp-18-8113-2018.