5,528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Glacier inventory and recent variations of Santa Inés Icefield, Southern Patagonia

, , , &
Pages 202-220 | Received 05 Aug 2021, Accepted 06 Apr 2022, Published online: 05 Jul 2022

References

  • Aguirre, F., J. Carrasco, T. Sauter, C. Schneider, K. Gaete, E. Garin, R. Adaros, N. Butorovic, R. Jaña, and G. Casassa. 2018. Snow cover change as climate indicator in Brunswick Peninsula, Patagonia. Frontiers in Earth Science 6:130. doi:10.3389/feart.2018.00130.
  • Aravena, J. C. 2007. Reconstructing climate variability using tree rings and glacier fluctuations in the Southern Chilean Andes. PhD thesis, University of Western Ontario, London, Canada, 220.
  • Aravena, J. C., and B. H. Luckman. 2009. Spatio-temporal rainfall patterns in Southern South America. International Journal of Climatology 29:2106–20. doi:10.1002/joc.1761.
  • Bahr, D. B., W. T. Pfeffer, and G. Kaser. 2014. A review of volume-area scaling of glaciers. Reviews of Geophysics 53:95–140. doi:10.1002/2014RG000470.
  • Barcaza, G., M. Aniya, T. Matsumoto, and T. Aoki. 2009. Satellite-derived equilibrium lines in Northern Patagonia Icefield, Chile, and their implications to glacier variations. Arctic, Antarctic, and Alpine Research 41 (2):174–82. doi:10.1657/1938-4246-41.2.174.
  • Bown, F., A. Rivera, P. Zenteno, C. Bravo, and F. Cawkwell. 2014. First glacier inventory and recent glacier variations on Isla Grande de Tierra del Fuego and adjacent islands in Southern Chile. In Global land ice measurements from space, ed. J. S. Kargel, G. J. Leonard, M. P. Bishop, and B. Raup, 661–73. Heidelberg; Berlin: Springer.
  • Braithwaite, R. J., and O. B. Olesen. 1989. Calculation of glacier ablation from air temperature, West Greenland. In Glacier fluctuations and climate change, ed. J. Oerlemans, 219–33. Dordrecht: Kluwer Academic. doi:10.1007/978-94-015-7823-3_15.
  • Braun, M. H., P. Malz, C. Sommer, D. Farías-Barahona, T. Sauter, G. Casassa, A. Soruco, P. Skvarca, and T. C. Seehaus. 2019. Constraining glacier elevation and mass changes in South America. Nature Climate Change 9:130–36. doi:10.1038/s41558-018-0375-7.
  • Bruchhausen, P. 1966. Isla Santa Inés, Patagonia. American Alpine Journal 15 (1):185.
  • Carrasco, J., G. Casassa, and A. Rivera. 2002. Meteorological and climatological aspects of the Southern Patagonia Icefield. In The Patagonian Icefields: A unique natural laboratory for environmental and climate change studies, ed. G. Casassa, F. V. Sepulveda, and R. M. Sinclair, 29–41. New York, NY: Kluwer Academic; Plenum Publishers. doi:10.1007/978-1-4615-0645-4_4.
  • Cogley, J. G., A. A. Arendt, A. Bauder, R. J. Braithwaite, R. Hock, P. Jansson, G. Kaser, M. Moller, R. Nicholson, L. A. Rasmussen, et al. 2010. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.
  • Copernicus Climate Change Service (C3S). 2019. C3S ERA5-land reanalysis. Copernicus climate change service. https://cds.climate.copernicus.eu/cdsapp#!/home
  • De Angelis, H. 2014. Hypsometry and sensitivity of the mass balance to changes in equilibrium-line altitude: The case of the Southern Patagonia Icefield. Journal of Glaciology 60 (219):14–28. doi:10.3189/2014JoG13J127.
  • Gascon, F., E. Cadau, O. Colin, B. Hoersch, C. Isola, B. López Fernández, and P. Martimort. 2014. Copernicus Sentinel-2 mission: Products, algorithms and Cal/Val. Proceedings of SPIE. doi:10.1117/12.2062260.
  • González-Reyes, A., J. C. Aravena, A. Muñoz, P. Soto-Rogel, I. Aguilera-Betti, and I. Toledo-Guerrero. 2017. Variabilidad de la precipitación en la ciudad de Punta Arenas, Chile, desde principios del siglo XX. Anales Instituto de la Patagonia 45 (1):31–44. doi:10.4067/S0718-686X2017000100031.
  • Granshaw, F. D., and A. G. Fountain. 2006. Glacier change (1958-1998) in the North Cascades National Park Complex, Washington, USA. Journal of Glaciology 52 (177):251–56. doi:10.3189/172756506781828782.
  • Gurdiel, I. 2019. Inventario glaciar y variaciones recientes del Campo de Hielo Santa Inés, Patagonia Austral. MSc thesis, Universidad de Magallanes, Punta Arenas, Chile, 108.
  • Hugonnet, R., R. McNabb, E. Berthier, B. Menounos, C. Nuth, L. Girod, D. Farinotti, M. Huss, I. Dussaillant, F. Brun, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592:726–31. doi:10.1038/s41586-021-03436-z.
  • Inventario Público de Glaciares. 2014. Dirección General de Aguas (DGA). Santiago, Chile: Ministerio de Obras Públicas.
  • Jóhannesson, T., C. F. Raymond, and E. D. Waddington. 1989. A simple method for determining the response time of glaciers. In Glacier fluctuations and climate change, ed. J. Oerlemans, 407–17. Kluwer Academic. doi:10.1007/978-94-015-7823-3_22.
  • Koopes, M., B. Hallet, and J. Anderson. 2009. Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. Journal of Glaciology 55 (190):207–20. doi:10.3189/002214309788608796.
  • Lliboutry, L. 1999. Glaciers of the Wet Andes. U.S. Geological Professional Paper, 1148–49.
  • Lopez, P., P. Chevallier, V. Favier, B. Pouyaud, F. Ordenes, and J. Oerlemans. 2010. A regional view of fluctuations in glacier length in Southern South America. Global and Planetary Change 71:85–108. doi:10.1016/J.GLOPLACHA.2009.12.009.
  • Malz, P., W. Meier, G. Casassa, R. Jaña, P. Skvarca, and M. H. Braun. 2018. Elevation and mass changes of the Southern Patagonia Icefield derived from TanDEM-X and SRTM data. Remote Sensing 10:188. doi:10.3390/rs10020188.
  • Masiokas, M. H., A. Rivera, L. E. Espizúa, R. Villalba, S. Delgado, and J. C. Aravena. 2009. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 281:242–68. doi:10.1916/j.paleo.2009.08-006.
  • Masiokas, M. H., A. Rabatel, A. Rivera, L. Ruiz, P. Pitte, J. L. Ceballos, G. Barcaza, A. Soruco, F. Bown, E. Berthier, et al. 2020. A review of the current state and recent changes of the Andean cryosphere. Frontiers in Earth Science 8 (99). doi: 10.3389/feart.2020.00099.
  • Meier, W. J.-H., P. Hochreuther, and M. H. Braun. 2018. An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Frontiers in Earth Science 6 (62). doi: 10.3389/feart.2018.00062.
  • Miller, J. 1965. Isla Santa Inéz, terra incognita. Explorers Journal 43 (1):23–26. illus.
  • Miller, J. 1967. Exploring America’s Southern tip. American Alpine Journal 15 (2):326–33. illus.
  • Miller, J. 1969. Fuegian Archipielago expedition. Explorers Journal 47 (2):128–41. illus.
  • Mortensen, V. P. 1965. Expedición Dinamarquesa Tierra del Fuego. 1 Edición. Sin Ed ed., 49. Buenos Aires.
  • Nuth, C., and A. Kääb. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5:271–90. doi:10.5194/tc-5-271.
  • Peters, I. 1987. Beyond Patagonia. A personal account of the nature, general history and potential for mountaineering of the Cordillera Darwin of Tierra del Fuego and the islands of the Beagle Channel and Magellan Strait, South Chile. Alpine Journal 2:54–60.
  • Radic, V., and R. Hock. 2010. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research 115:F01010. doi:10.1029/2009JF001373.
  • Raper, S. C. B., and R. J. Braithwaite. 2009. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hyosometry. The Cryosphere 3:183–94. doi:10.5194/tc-3-183-2009.
  • Rasmussen, L. A., H. Conway, and C. F. Raymond. 2007. Influence of upper air conditions on the Patagonia Icefields. Global and Planetary Change 59:203–2016. doi:10.1016/j.gloplacha.2006.11.025.
  • RGI Consortium. 2017. Randolph glacier inventory – A dataset of global glacier outlines: Version 6.0: Technical report. In Global land ice measurements from space. Colorado, USA: Digital Media.
  • Rivera, A., T. Benham, G. Casassa, J. Bamber, and J. Dowdeswell. 2007. Ice elevation and areal changes of glaciers from the Northern Patagonian Icefield, Chile. Global and Planetary Change 59:126–37. doi:10.1016/j.gloplacha.2006.11.037.
  • Rolstad, C., T. Haug, and B. Denby. 2009. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. Journal of Glaciology 55 (192):666–80. doi:10.3189/002214309789470950.
  • Rosenblüth, B., H. A. Fuenzalida, and P. Aceituno. 1997. Recent temperature variations in Southern South America. International Journal of Climatology 17 (1):67–85. doi:10.1002/(Sici)1097-0088(199701)17:1<67::Aid-Joc120>3.0.Co;2-G.
  • Saint-Loup. 1952. Montañas del Pacífico. Del Aconcagua al Cabo de Hornos. 1st ed, 200. Barcelona, España: Juventud.
  • Sauter, T. 2020. Revisiting extreme precipitation amounts over Southern South America and implications for the Patagonian Icefields. Hydrology and Earth System Sciences 24 (4):2003–16. doi:10.5194/hess-24-2003-2020.
  • Shipton, E. 1963. Land of tempest. Travels in Patagonia 1958-1962, 222. 1st ed. UK: Hodder & Stoughton Ltd.
  • Tielidze, L. G., and R. D. Wheate. 2018. The Greater Caucasus Glacier Inventory (Russia, Georgia, Azerbaijan). The Cryosphere 12:81–94. doi:10.5194/tc-12-81-2018.
  • Vilches, C. 2020. Impacto del cambio climático en el FIR Austral-Chile. Informe, Oficina de Cambio Climático, Sección Climatología, Dirección Meteorológica de Chile, 35.
  • Wake, L. M., and S. J. Marshall. 2015. Assessment of current methods of positive degree-day calculation using in situ observations from glaciated regions. Journal of Glaciology 61 (226):329–44. doi:10.3189/2015JoG14J116.
  • Weidemann, S. S., T. Sauter, R. Kilian, D. Steger, N. Butorovic, and C. Schneider. 2018. A 17-year record of meteorological observations across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, related to synoptic weather types and climate modes. Frontiers in Earth Science 6:53. doi:10.3389/feart.2018.00053.
  • Weidemann, S. S., J. Arigony-Neto, R. Jaña, G. Netto, I. González, G. Casassa, and C. Schneider. 2020. Recent climatic mass balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and reconstruction of Little Ice Age climate by simulating steady-state glacier conditions. Geosciences 10 (7):272. doi:10.3390/geosciences10070272.
  • Williams, R., D. Hall, O. Singurosson, and Y. Chien. 1997. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973-92. Annals of Glaciology 24:72–80. doi:10.3189/S0260305500011964.