3,238
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Abrupt permafrost thaw accelerates carbon dioxide and methane release at a tussock tundra site

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 443-464 | Received 05 Jan 2022, Accepted 25 Aug 2022, Published online: 29 Sep 2022

References

  • Abbott, B. W., and J. B. Jones. 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology 21 (12):4570–87. doi:10.1111/gcb.13069.
  • Abe, T., G. Iwahana, P. V. Efremov, A. R. Desyatkin, T. Kawamura, A. Fedorov, Y. Zhegusov, K. Yanagiya, and T. Tadono. 2020. Surface displacement revealed by L-band InSAR analysis in the Mayya area, Central Yakutia, underlain by continuous permafrost. Earth, Planets and Space 72 (1):138. doi:10.1186/s40623-020-01266-3.
  • Arndt, K. A., W. C. Oechel, J. P. Goodrich, B. A. Bailey, A. Kalhori, J. Hashemi, C. Sweeney, and D. Zona. 2019. Sensitivity of methane emissions to later soil freezing in Arctic tundra ecosystems. Journal of Geophysical Research: Biogeosciences 124 (8):2595–609. doi:10.1029/2019JG005242.
  • Bao, T., X. Xu, G. Jia, D. P. Billesbach, and R. C. Sullivan. 2021. Much stronger tundra methane emissions during autumn freeze than spring thaw. Global Change Biology 27 (2):376–87. doi:10.1111/gcb.15421.
  • Belshe, E. F., E. A. G. Schuur, B. M. Bolker, and R. Bracho. 2012. Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate. Journal of Geophysical Research: Biogeosciences 117 (G1). doi:10.1029/2011JG001836.
  • Belshe, E. F., E. A. G. Schuur, and G. Grosse. 2013. Quantification of upland thermokarst features with high resolution remote sensing. Environmental Research Letters 8 (3):35016. doi:10.1088/1748-9326/8/3/035016.
  • Burke, S. A., M. Wik, A. Lang, A. R. Contosta, M. Palace, P. M. Crill, and R. K. Varner. 2019. Long‐term measurements of methane ebullition from thaw ponds. Journal of Geophysical Research: Biogeosciences 124 (7):2208–21. doi:10.1029/2018JG004786.
  • Campitelli, E. 2021. Ggnewscale: Multiple fill and colour scales in “ggplot2” (0.4.5) [R]. https://CRAN.R-project.org/package=ggnewscale.
  • Cassidy, A. E., A. Christen, and G. H. R. Henry. 2016. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem. Biogeosciences 13 (8):2291–303. doi:10.5194/bg-13-2291-2016.
  • Clayden, J. 2020. Mmand: Mathematical morphology in any number of dimensions (1.6.1) [R]. https://CRAN.R-project.org/package=mmand.
  • Collalti, A., I. C. Prentice, and A. Polle. 2019. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology 39 (8):1473–83. doi:10.1093/treephys/tpz034.
  • Congalton, R. G., and K. Green. 2019. Assessing the accuracy of remotely sensed data: Principles and practices. 3rd ed. Boca Raton, FL: CRC Press.
  • Cooper, M. D. A., C. Estop-Aragonés, J. P. Fisher, A. Thierry, M. H. Garnett, D. J. Charman, J. B. Murton, G. K. Phoenix, R. Treharne, S. V. Kokelj, et al. 2017. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Climate Change 7 (7):507–11. doi:10.1038/nclimate3328.
  • Curasi, S. R., M. M. Loranty, and S. M. Natali. 2016. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape. Environmental Research Letters 11 (4):45002. doi:10.1088/1748-9326/11/4/045002.
  • Delwiche, K. B., S. H. Knox, A. Malhotra, E. Fluet-Chouinard, G. McNicol, S. Feron, Z. Ouyang, D. Papale, C. Trotta, E. Canfora, et al. 2021. FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Preprint. Biosphere – Biogeosciences. doi:10.5194/essd-2020-307.
  • De Reu, J., J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P. De Smedt, W. Chu, M. Antrop, P. De Maeyer, P. Finke, et al. 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186:39–49. doi:10.1016/j.geomorph.2012.12.015.
  • Devoie, É. G., J. R. Craig, R. F. Connon, and W. L. Quinton. 2019. Taliks: A tipping point in discontinuous permafrost degradation in peatlands. Water Resources Research 55 (11):9838–57. doi:10.1029/2018WR024488.
  • Dowle, M., and A. Srinivasan. 2021. Data.table: Extension of `data.frame`. (1.14.0) [R]. https://CRAN.R-project.org/package=data.table.
  • Euskirchen, E. S., C. W. Edgar, M. Syndonia Bret-Harte, A. Kade, N. Zimov, and S. Zimov. 2017. Interannual and seasonal patterns of carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in northeastern Siberia. Journal of Geophysical Research: Biogeosciences 122 (10):2651–68. doi:10.1002/2017JG004070.
  • Euskirchen, E. S., C. W. Edgar, M. R. Turetsky, M. P. Waldrop, and J. W. Harden. 2014. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost: Carbon fluxes and permafrost thaw. Journal of Geophysical Research: Biogeosciences 119 (8):1576–95. doi:10.1002/2014JG002683.
  • Farquharson, L. M., V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V. Kokelj, and D. Nicolsky. 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters 46 (12):6681–89. doi:10.1029/2019GL082187.
  • French, H., and Y. Shur. 2010. The principles of cryostratigraphy. Earth-Science Reviews 101 (3–4):190–206. doi:10.1016/j.earscirev.2010.04.002.
  • Garnier, S., N. Ross, R. Rudis, M. Sciaini, and C. Scherer. 2021. Rvision—Colorblind-friendly color maps for R (0.6.1) [R]. https://cran.r-project.org/web/packages/viridis/index.html.
  • Grosse, G., V. E. Romanovsky, K. Walter, A. Morgenstern, H. Lantuit, annd S. Zimov. 2008. Distribution of thermokarst lakes and ponds at three yedoma sites in siberia. In Ninth International Conference on Permafrost, ed. D. L. Kane and K. M. Hinkel. Fairbanks, AK: Institute of Northern Engineering, University of Alaska Fairbanks, 551–556.
  • Grosse, G., L. Schirrmeister, and T. J. Malthus. 2006. Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena–Anabar coastal lowland. Polar Research 25 (1):51–67. doi:10.1111/j.1751-8369.2006.tb00150.x.
  • Harris, C., and J. B. Murton. 2005. Interactions between glaciers and permafrost: An introduction. Geological Society, London, Special Publications 242 (1):1–9. doi:10.1144/GSL.SP.2005.242.01.01.
  • Hewitt, R. E., M. R. DeVan, I. V. Lagutina, H. Genet, A. D. McGuire, D. L. Taylor, and M. C. Mack. 2019. Mycobiont contribution to tundra plant acquisition of permafrost‐derived nitrogen. New Phytologist 226 (1): 126–141. doi:10.1111/nph.16235.
  • Hewitt, R. E., D. L. Taylor, H. Genet, A. D. McGuire, and C. Mack. 2018. Below‐ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. Journal of Ecology 107 (2):950–962. doi:10.1111/1365-2745.13062.
  • Hicks Pries, C. E., E. A. G. Schuur, and K. G. Crummer. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2):649–61. doi:10.1111/gcb.12058.
  • Hicks Pries, C. E., E. A. G. Schuur, S. M. Natali, and K. G. Crummer. 2016. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change 6 (2):214–18. doi:10.1038/nclimate2830.
  • Hicks Pries, C. E., E. A. G. Schuur, J. G. Vogel, and S. M. Natali. 2013. Moisture drives surface decomposition in thawing tundra. Journal of Geophysical Research: Biogeosciences 118 (3):1133–43. doi:10.1002/jgrg.20089.
  • Hicks Pries, C. E., R. S. P. van Logtestijn, E. A. G. Schuur, S. M. Natali, J. H. C. Cornelissen, R. Aerts, and E. Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12):4508–19. doi:10.1111/gcb.13032.
  • Hijmans, R. J. 2021. Raster: Geographic data analysis and modeling (3.4-10) [R]. https://CRAN.R-project.org/package=raster.
  • Hinkel, K. M., and F. E. Nelson. 2003. Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. Journal of Geophysical Research 108 (D2):8168. doi:10.1029/2001JD000927.
  • Houghton, R. A. 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35 (1):313–47. doi:10.1146/annurev.earth.35.031306.140057.
  • Jensen, A. E., K. A. Lohse, B. T. Crosby, and C. I. Mora. 2014. Variations in soil carbon dioxide efflux across a thaw slump chronosequence in northwestern Alaska. Environmental Research Letters 9 (2):25001. doi:10.1088/1748-9326/9/2/025001.
  • Jones, B. M., G. Grosse, C. D. Arp, E. Miller, L. Liu, D. J. Hayes, and C. F. Larsen. 2015. Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports 5 (1):15865. doi:10.1038/srep15865.
  • Jones, B. M., J. M. Stoker, A. E. Gibbs, G. Grosse, V. E. Romanovsky, T. A. Douglas, N. E. M. Kinsman, and B. M. Richmond. 2013. Quantifying landscape change in an Arctic coastal lowland using repeat airborne LiDAR. Environmental Research Letters 8 (4):45025. doi:10.1088/1748-9326/8/4/045025
  • Jorgenson, M. T., T. A. Douglas, A. K. Liljedahl, J. E. Roth, T. C. Cater, W. A. Davis, G. V. Frost, P. F. Miller, and C. H. Racine. 2020. The roles of climate extremes, ecological succession, and hydrology in repeated permafrost aggradation and degradation in fens on the Tanana Flats, Alaska. Journal of Geophysical Research: Biogeosciences 125 (12). doi: 10.1029/2020JG005824.
  • Jorgenson, M. T., and T. E. Osterkamp. 2005. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian Journal of Forest Research 35 (9):2100–11. doi:10.1139/X05-153.
  • Jorgenson, M. T., V. Romanovsky, J. Harden, Y. Shur, J. O’Donnell, E. A. G. Schuur, M. Kanevskiy, and S. Marchenko. 2010. Resilience and vulnerability of permafrost to climate change. Canadian Journal of Forest Research 40 (7):1219–36. doi:10.1139/X10-060.
  • Jorgenson, M. T., Y. L. Shur, and E. R. Pullman. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters 33 (2):L02503. doi:10.1029/2005GL024960.
  • Kääb, A. 2008. Remote sensing of permafrost-related problems and hazards. Permafrost and Periglacial Processes 19 (2):107–36. doi:10.1002/ppp.619.
  • Kanevskiy, M., Y. Shur, T. Jorgenson, D. R. N. Brown, N. Moskalenko, J. Brown, D. A. Walker, M. K. Raynolds, and M. Buchhorn. 2017. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297:20–42. doi:10.1016/j.geomorph.2017.09.001.
  • Kassambara, A. 2020. Ggpubr: “ggplot2” based publication ready plots (0.4.0) [R]. https://CRAN.R-project.org/package=ggpubr.
  • Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development 8 (11):3695–713. doi:10.5194/gmd-8-3695-2015.
  • Kokelj, S. V., and M. T. Jorgenson. 2013. Advances in thermokarst research: Recent advances in research investigating thermokarst processes. Permafrost and Periglacial Processes 24 (2):108–19. doi:10.1002/ppp.1779.
  • Kokelj, S. V., J. Kokoszka, J. van der Sluijs, A. C. A. Rudy, J. Tunnicliffe, S. Shakil, S. E. Tank, and S. Zolkos. 2021. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. The Cryosphere 15 (7):3059–81. doi:10.5194/tc-15-3059-2021.
  • Kutzbach, L., D. Wagner, and E.-M. Pfeiffer. 2004. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69 (3):341–62. doi:10.1023/B:BIOG.0000031053.81520.db.
  • Lantz, T. C., and S. V. Kokelj. 2008. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophysical Research Letters 35 (6):L06502. doi:10.1029/2007GL032433.
  • Lara, M. J., H. Genet, A. D. McGuire, E. S. Euskirchen, Y. Zhang, D. R. N. Brown, M. T. Jorgenson, V. Romanovsky, A. Breen, and W. R. Bolton. 2016. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Global Change Biology 22 (2):816–29. doi:10.1111/gcb.13124.
  • Lee, H., E. A. G. Schuur, and J. G. Vogel. 2010. Soil CO2 production in upland tundra where permafrost is thawing. Journal of Geophysical Research 115 (G1):G01009. doi:10.1029/2008JG000906.
  • Lee, H., E. A. G. Schuur, J. G. Vogel, M. Lavoie, D. Bhadra, and C. L. Staudhammer. 2011. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Global Change Biology 17 (3):1379–93. doi:10.1111/j.1365-2486.2010.02287.x.
  • Lenth, R. V. 2021. Emmeans: Estimated marginal means, aka least-squares means (1.6.1) [R]. https://CRAN.R-project.org/package=emmeans.
  • Lindgren, P. R., G. Grosse, K. M. Walter Anthony, and F. J. Meyer. 2016. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13 (1):27–44. doi:10.5194/bg-13-27-2016.
  • Luo, D., Q. Wu, H. Jin, S. S. Marchenko, L. Lü, and S. Gao. 2016. Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences 75 (7):555. doi:10.1007/s12665-015-5229-2.
  • Mauritz, M., R. Bracho, G. Celis, J. Hutchings, S. M. Natali, E. Pegoraro, V. G. Salmon, C. Schädel, E. E. Webb, and E. A. G. Schuur. 2017. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Global Change Biology 23 (9):3646–66. doi:10.1111/gcb.13661.
  • Myhre, G., D. Shindell, and J. Pongratz. 2014. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis; Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, 659–740. Cambridge, United Kingdom: Cambridge University Press.
  • Natali, S. M., J. P. Holdren, B. M. Rogers, R. Treharne, P. B. Duffy, R. Pomerance, and E. MacDonald. 2021. Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences 118 (21):e2100163118. doi:10.1073/pnas.2100163118.
  • Natali, S. M., E. A. G. Schuur, C. Trucco, C. E. Hicks Pries, K. G. Crummer, and A. F. Baron Lopez. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology 17 (3):1394–407. doi:10.1111/j.1365-2486.2010.02303.x.
  • Natali, S. M., J. D. Watts, B. M. Rogers, S. Potter, S. M. Ludwig, A.-K. Selbmann, P. F. Sullivan, B. W. Abbott, K. A. Arndt, L. Birch, et al. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change 9 (11):852–57. doi:10.1038/s41558-019-0592-8.
  • Nauta, A. L., M. M. P. D. Heijmans, D. Blok, J. Limpens, B. Elberling, A. Gallagher, B. Li, R. E. Petrov, T. C. Maximov, J. van Huissteden, et al. 2015. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change 5 (1):67–70. doi:10.1038/nclimate2446.
  • Nelson, F. E., O. A. Anisimov, and N. I. Shiklomanov. 2001. Subsidence risk from thawing permafrost. Nature 410 (6831):889–90. doi:10.1038/35073746.
  • NEON (National Ecological Observatory Network). 2020a. Elevation—LiDAR, RELEASE-2020 (DP3.30024.001). doi:10.48443/917d-g459.
  • NEON (National Ecological Observatory Network). 2020b. High-resolution orthorectified camera imagery mosaic, RELEASE-2020 (DP3.30010.001). doi:10.48443/4e85-cr14.
  • Neubauer, S. C., and J. P. Megonigal. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18 (6):1000–13. doi:10.1007/s10021-015-9879-4.
  • Nixon, F. M., and A. E. Taylor. 1998. Regional active layer monitoring across the sporadic, discontinuous and continuous permafrost zones, Mackenzie Valley, Norhtwestern Canada. In Proceedings of the Seventh International Conference on Permafrost, vol. 55, 815–820. Centre d’Etudes Nordiques, Université Laval, Québec.
  • Olefeldt, D., S. Goswami, G. Grosse, D. Hayes, G. Hugelius, P. Kuhry, A. D. McGuire, V. E. Romanovsky, A. B. K. Sannel, E. A. G. Schuur, et al. 2016. Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications 7 (1):13043. doi:10.1038/ncomms13043.
  • Osterkamp, T. E., M. T. Jorgenson, E. A. G. Schuur, Y. L. Shur, M. Z. Kanevskiy, J. G. Vogel, and V. E. Tumskoy. 2009. Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska. Permafrost and Periglacial Processes 20 (3):235–56. doi:10.1002/ppp.656.
  • Osterkamp, T. E., and V. E. Romanovsky. 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost and Periglacial Processes 10 (1):17–37.
  • Parazoo, N. C., C. D. Koven, D. M. Lawrence, V. Romanovsky, and C. E. Miller. 2018. Detecting the permafrost carbon feedback: Talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere 12 (1):123–44. doi:10.5194/tc-12-123-2018.
  • Pebesma, E. 2018. Simple features for R: Standardized support for spatial vector data. The R Journal 10 (1):439. doi:10.32614/RJ-2018-009.
  • Pebesma, E., and R. S. Bivand. 2005. Classes and methods for spatial data in R. R News 5(2). https://cran.r-project.org/doc/Rnews/
  • Pegoraro, E. F., M. Mauritz, R. Bracho, C. Ebert, P. Dijkstra, B. A. Hungate, K. T. Konstantinidis, Y. Luo, C. Schädel, J. M. Tiedje, et al. 2019. Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. Soil Biology and Biochemistry 129:201–11. doi:10.1016/j.soilbio.2018.10.009.
  • Pegoraro, E. F., M. E. Mauritz, K. Ogle, C. H. Ebert, and E. A. G. Schuur. 2020. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming. Global Change Biology 27 (6):1293–308. doi:10.1111/gcb.15481.
  • Pirk, N., M. Mastepanov, E. López-Blanco, L. H. Christensen, H. H. Christiansen, B. U. Hansen, M. Lund, F.-J. W. Parmentier, K. Skov, and T. R. Christensen. 2017. Toward a statistical description of methane emissions from Arctic wetlands. Ambio 46 (S1):70–80. doi:10.1007/s13280-016-0893-3.
  • Plaza, C., E. Pegoraro, R. Bracho, G. Celis, K. G. Crummer, J. A. Hutchings, C. E. Hicks Pries, M. Mauritz, S. M. Natali, V. G. Salmon, et al. 2019. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience 12 (8):627–31. doi:10.1038/s41561-019-0387-6.
  • Polishchuk, Y. M., A. N. Bogdanov, V. Y. Polishchuk, R. M. Manasypov, L. S. Shirokova, S. N. Kirpotin, and O. S. Pokrovsky. 2017. Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia Lowland. Water 9 (3):228. doi: 10.3390/w9030228.
  • Porter, C., P. Morin, I. Howat, M.-J. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, et al. 2018. ArcticDEM. V1 ed. Map. Harvard Dataverse. doi:10.7910/DVN/OHHUKH.
  • Raz-Yaseef, N., M. S. Torn, Y. Wu, D. P. Billesbach, A. K. Liljedahl, T. J. Kneafsey, V. E. Romanovsky, D. R. Cook, and S. D. Wullschleger. 2017. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska: spring pulse emission. Geophysical Research Letters 44 (1):504–13. doi:10.1002/2016GL071220.
  • R Core Team. (2021). R: A language and environment for statistical computing (4.1.0) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
  • Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, et al. 2005. On the separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Global Change Biology 11 (9):1424–39. doi:10.1111/j.1365-2486.2005.001002.x.
  • Rodenhizer, H. 2021. Thermokarstdetection. Github Repository. https://github.com/HRodenhizer/thermokarstdetection.
  • Rodenhizer, H., G. Celis, R. Bracho, and E. A. G. Schuur. 2021. AmeriFlux US-EML Eight Mile Lake permafrost thaw gradient, Healy Alaska, Ver. Ameriflux AMP: 4–5. doi:10.17190/AMF/1418678.
  • Rodenhizer, H., J. Ledman, M. Mauritz, S. M. Natali, E. Pegoraro, C. Plaza, E. Romano, C. Schädel, M. Taylor, and E. Schuur. 2020. Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment. Journal of Geophysical Research: Biogeosciences 125 (6). doi: 10.1029/2019JG005528.
  • Rodenhizer, H., M. E. Mauritz, M. A. Taylor, J. Ledman, S. M. Natali, and E. A. G. Schuur, & Bonanza Creek LTER. 2021. Eight Mile Lake research watershed, Carbon In Permafrost Experimental Heating Research (CiPEHR): GPS elevation, 2009-2020 ver 3. Environmental Data Initiative. doi:10.6073/pasta/18922ce3170dc2abf1dcc78585302f45.
  • Salmon, V. G., P. Soucy, M. Mauritz, G. Celis, S. M. Natali, M. C. Mack, and E. A. G. Schuur. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology 22 (5):1927–41. doi:10.1111/gcb.13204.
  • Schuur, E. A. G., J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, et al. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58 (8):701–14. doi:10.1641/B580807.
  • Schuur, T., R. Bracho, G. Celis, F. Belshe, C. Ebert, J. Ledman, M. Mauritz, E. Pegoraro, C. Plaza, H. Rodenhizer, et al. 2021. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over fifteen years of measurements. Journal of Geophysical Research: Biogeosciences 126 (6). doi: 10.1029/2020JG006044.
  • Schuur, E. A. G., K. G. Crummer, J. G. Vogel, and M. C. Mack. 2007. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10 (2):280–92. doi:10.1007/s10021-007-9024-0.
  • Schuur, E. A. G., and M. C. Mack. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annual Review of Ecology, Evolution, and Systematics 49 (1):279–301. doi:10.1146/annurev-ecolsys-121415-032349.
  • Schuur, E. A. G., A. D. McGuire, V. E. Romanovsky, C. Schädel, M. C. Mack. 2018. Arctic and boreal carbon. In Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report, ed. N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu, 428–68. Washington, DC: U.S. Global Change Research Program. doi:10.7930/SOCCR2.2018.Ch11.
  • Song, C., X. Xu, X. Sun, H. Tian, L. Sun, Y. Miao, X. Wang, and Y. Guo. 2012. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7 (3):034009. doi:10.1088/1748-9326/7/3/034009.
  • Streletskiy, D. A., N. I. Shiklomanov, F. E. Nelson, and W. E. Klene. 2008. Thirteen years of observations at Alaskan CALM sites: Long-term active layer and ground surface temperature trends. In Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, Fairbanks, Alaska, vol. 2, pp. 1727–32. Institute of Northern Engineering, University of Alaska Fairbanks.
  • Swanson, D. K. 2021. Permafrost thaw‐related slope failures in Alaska’s Arctic National Parks, c. 1980–2019. Permafrost and Periglacial Processes:2098. doi:10.1002/ppp.2098.
  • Tagesson, T., M. Mölder, M. Mastepanov, C. Sigsgaard, M. P. Tamstorf, M. Lund, J. M. Falk, A. Lindroth, T. R. Christensen, and L. Ström. 2012. Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. Global Change Biology 18 (6):1928–40. doi:10.1111/j.1365-2486.2012.02647.x.
  • Taylor, M. A., G. Celis, J. D. Ledman, R. Bracho, and E. A. G. Schuur. 2018. Methane efflux measured by eddy covariance in Alaskan upland tundra undergoing permafrost degradation. Journal of Geophysical Research: Biogeosciences 123 (9):2695–710. doi:10.1029/2018JG004444.
  • Taylor, M. A., G. Celis, J. Ledman, M. Mauritz, S. M. Natali, E. Pegoraro, C. Schädel, and E. A. G. Schuur. 2021. Experimental soil warming and permafrost thaw increase CH4 emissions in an upland tundra ecosystem. Journal of Geophysical Research: Biogeosciences 126 (11). doi:10.1029/2021JG006376.
  • Teufel, B., and L. Sushama. 2019. Abrupt changes across the Arctic permafrost region endanger northern development. Nature Climate Change 9 (11):858–62. doi:10.1038/s41558-019-0614-6.
  • Thorson, R. M. 1986. Late Cenozoic glaciation of the Northern Nenana Valley. In Glaciation in Alaska, ed. T. D. Hamilton, K. M. Reed, and R. M. Thorson, 99–121. Alaska Geological Society.
  • Tokida, T., M. Mizoguchi, T. Miyazaki, A. Kagemoto, O. Nagata, and R. Hatano. 2007. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 70 (2):165–71. doi:10.1016/j.chemosphere.2007.06.042.
  • Trucco, C., E. A. G. Schuur, S. M. Natali, E. F. Belshe, R. Bracho, and J. Vogel. 2012. Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. Journal of Geophysical Research: Biogeosciences 117 (G2). doi:10.1029/2011JG001907.
  • Turetsky, M. R., B. W. Abbott, M. C. Jones, K. W. Anthony, D. Olefeldt, E. A. G. Schuur, G. Grosse, P. Kuhry, G. Hugelius, C. Koven, et al. 2020. Carbon release through abrupt permafrost thaw. Nature Geoscience 13 (2):138–43. doi:10.1038/s41561-019-0526-0.
  • Veremeeva, A., I. Nitze, F. Günther, G. Grosse, and E. Rivkina. 2021. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma lowland yedoma region, north-eastern Siberia. Remote Sensing 13 (2):178. doi:10.3390/rs13020178.
  • Vogel, J., E. A. G. Schuur, C. Trucco, and H. Lee. 2009. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. Journal of Geophysical Research 114 (G4):G04018. doi:10.1029/2008JG000901.
  • Ward Jones, M. K., W. H. Pollard, and B. M. Jones. 2019. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters 14 (5):55006. doi:10.1088/1748-9326/ab12fd.
  • Watts, J. D., S. M. Natali, C. Minions, D. Risk, K. Arndt, D. Zona, E. S. Euskirchen, A. V. Rocha, O. Sonnentag, M. Helbig, et al. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters 16 (8):084051. doi:10.1088/1748-9326/ac1222.
  • Webb, E. E., E. A. G. Schuur, S. M. Natali, K. L. Oken, R. Bracho, J. P. Krapek, D. Risk, and N. R. Nickerson. 2016. Increased wintertime CO2 loss as a result of sustained tundra warming: Tundra wintertime CO2 loss. Journal of Geophysical Research: Biogeosciences 121 (2):249–65. doi:10.1002/2014JG002795.
  • Westermann, S., C. Duguay, G. Grosse, A. Kääb. 2015. Remote sensing of permafrost and frozen ground. In Remote sensing of the cryosphere, and M. Tedesco, 307–44. 1st ed. West Sussex: John Wiley & Sons, Ltd.
  • Wickham, H., M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4 (43):1686. doi:10.21105/joss.01686.
  • Wickland, K. P., M. T. Jorgenson, J. C. Koch, M. Kanevskiy, and R. G. Striegl. 2020. Carbon dioxide and methane flux in a dynamic Arctic tundra landscape: Decadal‐scale impacts of ice wedge degradation and stabilization. Geophysical Research Letters 47 (22). doi: 10.1029/2020GL089894.
  • Wu, H., and Z.-L. Li. 2009. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 9 (3):1768–93. doi:10.3390/s90301768.
  • Wutzler, T., A. Lucas-Moffat, M. Migliavacca, J. Knauer, K. Sickel, L. Šigut, O. Menzer, and M. Reichstein. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15 (16):5015–30. doi:10.5194/bg-15-5015-2018.
  • Zona, D., B. Gioli, R. Commane, J. Lindaas, S. C. Wofsy, C. E. Miller, S. J. Dinardo, S. Dengel, C. Sweeney, A. Karion, et al. 2016. Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences 113 (1):40–45. doi:10.1073/pnas.1516017113.