1,547
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling weak snow layer fracture in propagation saw test using an ice column model

ORCID Icon, &
Pages 507-524 | Received 16 Nov 2021, Accepted 06 Sep 2022, Published online: 18 Oct 2022

References

  • ABAQUS. 2012. Analysis user's manual (version 6.12). Dassault Systemes Simulia, Inc.
  • Bader, H. P., and B. Slam. 1990. On the mechanics of snow slab release. Cold Region Science and Technology 17 (3):288–300. doi:10.1016/S0165-232X(05)80007-2.
  • Bair, E., R. Simenhois, K. Birkeland, and J. Dozier. 2012. A field study on failure of storm snow slab avalanches. Cold Region Science and Technology 17:20–28. doi:10.1016/j.coldregions.2012.02.007.
  • Bathe, K. J. 2003. Finite element procedures. New Delhi: Prentice-Hall of India Private Limited.
  • Bobillier, G., B. Bergfeld, A. Capelli, J. Dual, J. Gaume, A. van Herwijnen, and J. Schweizer. 2020. Micromechanical modeling of snow failure. The Cryosphere 14 (1):39–49. doi:10.5194/tc-14-39.
  • Bobillier, G., B. Bergfeld, J. Dual, J. Gaume, A. van Herwijnen, and J. Schweizer. 2021. Micromechanical insights into the dynamics of crack propagation in snow fracture experiments. Scientific Reports 11 (1):11711. doi:10.1038/s41598-021-90910-3.
  • Bouchbinder, E., J. Fineberg, and M. Marder. 2010. Dynamics of simple cracks. Annual Review of Condensed Matter Physics 1 (1):371–95. doi:10.1146/annurev-conmatphys-070909-104019.
  • Carney, K. S., D. J. Benson, P. DuBois, and R. Lee. 2006. A phenomenological high strain rate model with failure for ice. International Journal of Solids and Structures 43 (25–26):7820–39. doi:10.1016/j.ijsolstr.2006.04.005.
  • Chandel, C., P. K. Srivastava, and P. Mahajan. 2014. Micromechanical analysis of deformation of snow using X-ray tomography. Cold Regions Science and Technology 101:14–23. doi:10.1016/j.coldregions.2014.01.005.
  • Fohn, P. M. B., C. Camponovo, and G. Krusi. 1998. Mechanical and structural properties of weak snow layers measured in-situ. Annals of Glaciology 26:1–6. doi:10.3189/1998AoG26-1-1-6.
  • Gaume, J., G. Chambon, N. Eckert, and M. Naaim. 2013. Influence of weak-layer heterogeneity on snow slab avalanche release: Application to the evaluation of avalanche release depths. Journal of Glaciology 59 (215):423–37.
  • Gaume, J., G. Chambon, N. Eckert, M. Naaim, and J. Schweizer. 2015. Influence of weak-layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area. The Cryosphere 9 (2):795–804. doi:10.5194/tc-9-795-2015.
  • Gaume, J., A. van Herwijnen, G. Chambon, K. W. Birkeland, and J. Schweizer. 2015. Modelling of crack propagation in weak snowpack layers using the discrete element method. The Cryosphere 9 (5):1915–32. doi:10.5194/tc-9-1915-2015.
  • Gaume, J., A. van Herwijnen, G. Chambon, N. Wever, and J. Schweizer. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. The Cryosphere 11 (1):217–28. doi:10.5194/tc-11-217-2017.
  • Gauthier, D., and B. Jamieson. 2008. Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers. Cold Region Science and Technology 51 (2–3):87–97. doi:10.1016/j.coldregions.2007.04.005.
  • Haefeli, R. 1963. Stress transformations, tensile strengths and rupture processes of the snow cover. In Ice and snow, ed. W. D. Kingery I’d., 560–75. Cambridge, MA: M. I. T. Press.
  • Heierli, J. 2005. Solitary fracture waves in metastable snow stratifications. Journal of Geophysical Research (Earth Surface) 110 (F9):F02008. doi:10.1029/2004JF000178.
  • Heierli, J., P. Gumbsch, and D. Sherman. 2012. Anticrack-type fracture in brittle foam under compressive stress. Science Scripta Materialia 67 (1):96–99. doi:10.1016/j.scriptamat.2012.03.032.
  • Heierli, J., P. Gumbsch, and M. Zaiser. 2008. Anticrack nucleation as triggering mechanism for slab avalanches. Science 321 (5886):240–43. doi:10.1126/science.1153948.
  • Jamieson, J. B., and J. Schweizer. 2000. Texture and strength changes of buried surface hoar layers with implications for dry snow-slab avalanche release. Journal of Glaciololgy 46 (152):151–60. doi:10.3189/172756500781833278.
  • Johnson B. C. 2000. Remotely triggered slab avalanches. MSc thesis, Department of Civil Engineering, University of Calgary, Calgary, Canada.
  • Johnson, B. C., J. B. Jamieson, and R. R. Stewart. 2004. Seismic measurements of fracture speed in a weak snowpack layer. Cold Region Science and Technology 40 (1–2):41–45. doi:10.1016/j.coldregions.2004.05.003.
  • Kermani, M., M. Farzaneh, and R. Gagnon. 2008. Bending strength and effective modulus of atmospheric ice. Cold Region Science and Technology 53 (2):162–69. doi:10.1016/j.coldregions.2007.08.006.
  • Kirchner, H. O. K., G. Michot, and J. Schweizer. 2002. Fracture toughness of snow in shear and tension. Scripta Materialia 46 (6):425–29. doi:10.1016/S1359-6462(02)00007-6.
  • Köchle, B., and M. Schneebeli. 2014. Three-dimensional microstructure and numerical calculation of elastic properties of alpine snow with a focus on weak layers. Journal of Glaciology 60 (222):705–13. doi:10.3189/2014JoG13J220.
  • Li, J., D. Leguillon, E. Martin, and X. Zhang. 2019. Numerical implementation of the coupled criterion for damaged materials. International Journal of Solids and Structures, Elsevier 165:93–103. doi:10.1016/j.ijsolstr.2019.01.025.
  • Mahajan, P., K. Kalakunta, and C. Chandel. 2010. Numerical simulation of failure in a layered thin snowpack under skier load. Annals of Glaciology 51 (54):169–75. doi:10.3189/172756410791386436.
  • Mahajan, P., and S. Senthil. 2004. Cohesive element modelling of crack growth in layered snowpack. Cold Region Science and Technology 40 (1–2):111–22. doi:10.1016/j.coldregions.2004.06.006.
  • McClung, D. M. 1979. Shear fracture precipitated by strain softening as a mechanism of dry avalanche release. Journal of Geophysical Research 84 (B7):3519–26. doi:10.1029/JB084iB07p03519.
  • McClung, D. M. 1980. Fracture mechanical models of dry slab avalanche release. Journal of Geophysical Research 86 (B11):10783–90. doi:10.1029/JB086iB11p10783.
  • McClung, D. M. 1987. Mechanics of snow slab failure from a geotechnical perspective. Davos Symposium on Avalanche Formation, Movement and Effects (IAHS Publication) 162:475–508.
  • McClung, D. M. 2005. Approximate estimates of fracture speeds for dry slab avalanches. Geophysical Research Letters 32 (8):L08406. doi:10.1029/2005GL022391.
  • McClung, D. M. 2007. Fracture energy applicable to dry snow slab avalanche release. Geophysical Research Letters 34 (2):1–5. doi:10.1029/2006GL028238.
  • McClung, D. M. 2009. Dry snow slab quasi-brittle fracture initiation and verification from field tests. Journal of Geophysical Research 114 (F1):F01022. doi:10.1029/2007JF000913.
  • Mulak, D., and J. Gaume. 2019. Numerical investigation of the mixed-mode failure of snow. Computational Particle Mechanics 6 (3):439–47. doi:10.1007/s40571-019-00224-5.
  • Perla, R. I., and E. R. LaChapelle. 1970. A theory of snow slab failure. Journal of Geophysical Research 75 (36):7619–27. doi:10.1029/JC075i036p07619.
  • Reiweger, I., and J. Schweizer. 2010. Failure of a layer of buried surface hoar. Geophysical Research Letters 37 (24):L24501. doi:10.1029/2010GL045433.
  • Reiweger, I., and J. Schweizer. 2013. Weak layer fracture: Facets and depth hoar. The Cryosphere 7 (5):1447–53. doi:10.5194/tc-7-1447-2013.
  • Reuter, B., N. Calonne, and E. Adams. 2019. Shear failure of weak snow layers in the first hours after burial. The Cryosphere Discuss. doi:10.5194/tc-2018-268.
  • Rosendahl, P. L., and P. Weißgraeber. 2020. Modeling snow slab avalanches caused by weak-layer failure-Part 2: Coupled mixed-mode criterion for skier-triggered anticracks. The Cryosphere 14 (1):131–45. doi:10.5194/tc-14-131-2020.
  • Sain, T., and R. Narasimhan. 2011. Constitutive modeling of ice in the high strain rate regime. International Journal of Solids and Structures 48 (5):817–27. doi:10.1016/j.ijsolstr.2010.11.016.
  • Scapozza, C. 2004. Entwicklung eines dichte- und temperaturabhängigen Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens von Schnee. PhD thesis, ETH Zürich. doi:10.3929/ethz-a-004680249.
  • Schulson, E. M., and P. Duval. 2009. Creep and fracture of ice. Cambridge: Cambridge University Press.
  • Schweizer, J., J. B. Jamieson, and M. Schneebeli. 2003. Snow avalanche formation. Review of Geophysics 41 (4):4/1016. doi:10.1029/2002RG000123.
  • Schweizer, J., G. Michot, and H. O. K. Kirchner. 2004. On the fracture toughness of snow. Annals of Glaciology 38:1–8. doi:10.3189/172756404781814906.
  • Schweizer, J., B. Reuter, A. van Herwijnen, B. Richter, and J. Gaume. 2016. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties. The Cryosphere 10 (6):2637–53. doi:10.5194/tc-10-2637-2016.
  • Schweizer, J., A. van Herwijnen, and B. Reuter. 2011. Measurements of weak layer fracture energy. Cold Region Science and Technology 69 (2–3):139–44. doi:10.1016/j.coldregions.2011.06.004.
  • Shapiro, L. H., J. B. Johnson, M. Sturm, and G. L. Blaisdell. 1997. Snow mechanics. CRREL Report 97 (3).
  • Sigrist, C. 2006. Measurement of fracture mechanical properties of snow and application to dry snow slab avalanches. PhD thesis, ETH Zurich, Diss. ETH No. 16736.
  • Sigrist, C., and J. Schweizer. 2007. Critical energy release rates of weak snowpack layers determined in field experiments. Geophysical Research Letters 34 (3):L03502. doi:10.1029/2006GL028576.
  • Vachon, R., and C. F. Hieronymus. 2019. Mechanical energy balance and apparent fracture toughness for dykes in elastoplastic host rock with large-scale yielding. Geophysical Journal International 219 (3):1786–804. doi:10.1093/gji/ggz383.
  • van Herwijnen, A., J. Gaume, E. H. Bair, B. Reuter, K. W. Birkeland, and J. Schweizer. 2016. Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments. Journal of Glaciology 62 (236):997–1007. doi:10.1017/jog.2016.90.
  • van Herwijnen, A., and B. Jamieson. 2005. High-speed photography of fractures in weak snowpack layers. Cold Regions Science and Technology 43 (1–2):71–82. doi:10.1016/j.coldregions.2005.05.005.