900
Views
0
CrossRef citations to date
0
Altmetric
Introduction: PalaeoArc: Processes and Palaeo-environmental Changes in the Arctic - from Past to Present

Introduction: Processes and Palaeo-Environmental Changes in the Arctic from Past to Present (PalaeoArc) special issue

ORCID Icon, , , &

References

  • Alatarvas, R., K. Strand, O. Hyttinen, and A. Kotilainen. 2022. Sedimentary facies and clay mineralogy of the late Pleistocene Landsort Deep sediments, Baltic Sea – implications for the Baltic Ice Lake development. Arctic, Antarctic, and Alpine Research 54:624–39. doi:10.1080/15230430.2022.2155352.
  • Alexanderson, H., M. Hättestrand, M. A. Lindqvist, and T. Sigfúsdóttir. 2022. MIS 3 age of the Veiki moraine in N Sweden – Dating the landform record of an intermediate-sized ice sheet in Scandinavia. Arctic, Antarctic, and Alpine Research 54:239–61. doi:10.1080/15230430.2022.2091308.
  • Allen, M. R., O. P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, et al. 2018. Framing and context. In Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, ed. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, et al., 49–92. Cambridge, UK and New York, NY, USA: Cambridge University Press. doi:10.1017/9781009157940.003.
  • Arctic Monitoring and Assessment Programme. 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv + 269. https://www.amap.no/documents/download/2987/inline
  • Barlow, N. L. M., E. L. McClymont, P. L. Whitehouse, C. R. Stokes, S. S. R. Jamieson, S. A. Woodroffe, M. J. Bentley, S. L. Callard, C. Ó Cofaigh, D. J. A. Evans, et al. 2018. Lack of evidence for a substantial sea-level fluctuation within the last interglacial. Nature Geoscience 11 (9):627–34. doi:10.1038/s41561-018-0195-4.
  • Batchelor, C. L., M. Margold, M. Krapp, D. K. Murton, A. S. Dalton, P. L. Gibbard, C. R. Stokes, J. B. Murton, and A. Manica. 2019. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communication 10 (1):3713. doi:10.1038/s41467-019-11601-2.
  • Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365 (6442):143–47. doi:10.1038/365143a0.
  • Brendryen, J., H. Haflidason, Y. Yokoyama, K. A. Haaga, and B. Hannisdal. 2020. Eurasian ice sheet collapse was a major source of meltwater pulse 1A 14,6000 years ago. Nature Geoscience 13 (5):363–68. doi:10.1038/s41561-020-0567-4.
  • Colleoni, F., N. Kirchner, F. Niessen, A. Quiquet, and J. Liakka. 2016. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions. Quaternary Science Reviews 147:148–63. doi:10.1016/j.quascirev.2015.12.023.
  • Dalton, A. S., S. A. Finkelstein, P. J. Barnett, and S. L. Forman. 2016. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quaternary Science Reviews 146:288–99. doi:10.1016/j.quascirev.2016.06.015.
  • Dalton, A. S., S. A. Finkelstein, S. L. Forman, P. J. Barnett, T. Pico, and J. X. Mitrovica. 2019. Was the Laurentide Ice Sheet significantly reduced during Marine Isotope Stage 3? Geology 47 (2):111–14. doi:10.1130/G45335.1.
  • Dalton, A. S., M. Margold, C. R. Stokes, L. Tarasov, A. S. Dyke, R. S. Adams, S. Allard, H. E. Arends, N. Atkinson, J. W. Attig, et al. 2020. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American ice sheet complex. Quaternary Science Reviews 234:106223. doi:10.1016/j.quascirev.2020.106223.
  • Dalton, A. S., C. R. Stokes, and C. L. Batchelor. 2022. Evolution of the Laurentide and Innuitian ice sheets prior to the Last Glacial Maximum (115 ka to 25 ka). Earth-Science Reviews 224:103875. doi:10.1016/j.earscirev.2021.103875.
  • Elverhøi, A., J. A. Dowdeswell, S. Funder, J. Mangerud, and R. Stein, (Eds.). 1998. Glacial and oceanic history of the Polar North Atlantic margins. Quaternary Science Reviews 17 (1–3):1–302. doi:10.1016/S0277-3791(97)00073-5.
  • Ely, J. C., C. D. Clark, R. C. A. Hindmarsh, A. L. C. Hughes, S. L. Greenwood, S. L. Bradley, E. Gasson, L. Gregoire, N. Gandy, C. R. Stokes, et al. 2021. Recent progress on combining geomorphological and geochronological data with ice sheet modelling, demonstrated using the last British-Irish Ice Sheet. Journal of Quaternary Science 36 (5):946–60. doi:10.1002/jqs.3098.
  • England, J. H., R. D. Coulthard, M. F. A. Furze, and C. F. Dow. 2022. Catastrophic ice shelf collapse along the NW Laurentide Ice Sheet highlights the vulnerability of marine-based margins. Quaternary Science Reviews 286:107524. doi:10.1016/j.quascirev.2022.107524.
  • Fox-Kemper, B., H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, et al. 2021. Ocean, cryosphere and sea level change. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, et al., 1211–362. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • Francis, J., T. Scambos, and M. Tedesco. 2021. How are reduced Arctic sea ice and increased Greenland melting connected? Arctic, Antarctic, and Alpine Research 53 (1):225–26. doi:10.1080/15230430.2021.1946243.
  • Gamboa-Sojo, V. M., K. Husum, C. Morigi, D. Divine, and A. Miettinen. 2022. Environmental changes in Krossfjorden, Svalbard, since 1950: Benthic foraminiferal and stable isotope evidence. Arctic, Antarctic, and Alpine Research 54:465–77. doi:10.1080/15230430.2022.2120246.
  • Gowan, E. J., X. Zhang, S. Khosravi, A. Rovere, P. Stocchi, A. L. C. Hughes, R. Gyllencreutz, J. Mangerud, J. I. Svendsen, and G. Lohmann. 2021. Global ice sheet reconstruction for the past 80000 years. Nature Communications 12 (1199). doi:10.1038/s41467-021-21469-w.
  • Gregoire, L. J., A. J. Payne, and P. J. Valdes. 2012. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487 (7406):219–22. doi:10.1038/nature11257.
  • Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29 (2):142–52. doi:10.1016/0033-5894(88)90057-9.
  • Helmes, K. F. 2019. The last 130 000 years in Fennoscandia reconstructed based on a long and fossil-rich sediment sequence preserved at Sokli in northern Finland. New evidence for highly dynamic environmental and climate conditions. Technical Report TR-18-04. Swedish Nuclear Fuel and Waste Management Co, 115 pp.
  • Hemming, S. R. 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42 (1):RG1005. doi:10.1029/2003RG000128.
  • Hjort, C., and K. M. Persson, (Eds.). 1994. The PONAM project. Boreas 23 (4):281–536. doi:10.1111/j.1502-3885.1994.tb00600.x.
  • Hughes, A. L. C., R. Gyllencreutz, Ø. S. Lohne, J. Mangerud, and J. I. Svendsen. 2016. The last Eurasian ice sheets – A chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45.
  • Jakobsson, M., O. Ingólfsson, K. H. Kjær, A. Long, and R. F. Spielhagen. 2010. New insights on Arctic Quaternary climate variability from palaeo-records and numerical modelling. Special issue: Arctic Palaeoclimate and its extremes. Quaternary Science Reviews 29 (25–26):3349–676. doi:10.1016/j.quascirev.2010.08.016.
  • Jakobsson, M., O. Ingólfsson, A. Long, and R. F. Spielhagen. 2014. The dynamic Arctic. Special issue: APEX II: Arctic Palaeoclimate and its extremes. Quaternary Science Reviews 92 (25–26):1–444. doi:10.1016/j.quascirev.2014.03.022.
  • Jakobsson, M., J. Nilsson, L. Anderson, J. Backman, G. Björk, T. M. Cronin, N. Kirchner, A. Koshurnikov, L. Mayer, R. Noormets, et al. 2016. Evidence for an ice shelf covering the central Arctic Ocean during the penultiumate glaciation. Nature Communications 7 (1):10365. doi:10.1038/ncomms10365.
  • Jakobsson, M., R. F. Spielhagen, J. Thiede, C. Andreasen, B. Hall, O. Ingólfsson, K. H. Kjær, T. van Kolfschoten, G. Krinner, A. Long, et al. 2008. Foreword to the special issue: Arctic Palaeoclimate and its extremes (APEX). Polar Research 27 (2):97–104. https://doi.org/10.1111/j.1751-8369.2008.00063.x
  • Jennings, A., B. Reilly, J. Andrews, K. Hogan, M. Walczak, M. Jakobsson, J. Stoner, A. Mix, K. Nicholls, M. O’Regan, et al. 2022. Modern and early Holocene ice shelf sediment facies from Petermann Fjord and northern Nares Strait, northwest Greenland. Quaternary Science Reviews 283:107460. doi:10.1016/j.quascirev.2022.107460.
  • Kelleher, R., A. Jennings, J. Andrews, N. K. S. Brooks, T. Marchitto, S. Feng, L. Woelders, A. Normandeau, K. Jenner, R. Bennett, et al. 2022. Late glacial retreat of the Lancaster Sound Ice Stream and early Holocene onset of Arctic/Atlantic throughflow in the Arctic Island channels. Arctic, Antarctic, and Alpine Research 54:395–427. doi:10.1080/15230430.2022.2110689.
  • Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson. 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479 (7374):509–12. doi:10.1038/nature10581.
  • Kirkham, J. D., K. A. Hogan, R. D. Larter, N. S. Arnold, J. C. Ely, C. D. Clark, E. Self, K. Games, M. Huuse, M. A. Stewart, et al. 2022. Tunnel valley formation beneath deglaciating mid-latiutude ice sheets: Observations and modelling. Quaternary Science Reviews. doi:10.1016/j.quascirev.2022.107680.
  • Kjær, K. H., E. Larsen, I. N. Demidov, and S. Funder, (Eds.). 2006. Late Quaternary in northwestern Russia – Introduction. Boreas 35 (3):391–606. doi:10.1080/03009480600797418.
  • Kleman, J., M. Hättestrand, Borgström, D., Fabel, and F. Preusser. 2021. Age and duration of a MIS 3 interstadial in the Fennoscandian Ice Sheet core area – Implications for ice sheet dynamics. Quaternary Science Reviews 364. doi:10.1016/j.quascirev.2021.107011.
  • Landvik, J. Y., and O. Salvigsen. (Eds.). 1995. The PONAM project in eastern Svalbard. Polar Research 14 (2):93–275.
  • Larsen, E., S. Funder, and J. Thiede, (Eds.). 1999. Late Quaternary history of Northwestern Russia and adjacent shelves. Boreas 28 (1):1–242. doi:10.1111/j.1502-3885.1999.tb00203.x.
  • Larsen, N. K., A. S. Søndergaard, L. B. Levy, A. Strunk, D. S. Skov, A. Bjørk, S. A. Khan, and J. Olsen. 2022. Late glacial and Holocene glaciation history of North and Northeast Greenland. Arctic, Antarctic, and Alpine Research 54:294–313. doi:10.1080/15230430.2022.2094607.
  • Lyså, A., Í. Ö. Benediktsson, E. Gregoire, A. Jennings, C. Morigi, J. Müller, M. O’Regan, P. Sarala, C. Stokes, W. Szczuciński, et al. 2019. First International Conference on 'Processes and Palaeo-environmental changes in the Arctic: From past to present’ (PalaeoArc). Geologos 25 (2):175–79. doi:10.2478/logos-2019-0016.
  • Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, J. Melbourne-Thomas, M. M. C. Muelbert, et al. 2019. Polar regions. In IPCC special report on the ocean and cryosphere in a changing climate, ed. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, et al., 203–320. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • Miller, G. H., and J. T. Andrews. 2019. Hudson Bay was not deglaciated during MIS-3. Quaternary Science Reviews 225:105944. doi:10.1016/j.quascirev.2019.105944.
  • Niessen, F., J. K. Hong, A. Hegewald, J. Matthiessen, R. Stein, H. Kim, S. Kim, L. Jensen, W. Jokat, S. Nam, et al. 2013. Repeated Pleistocene glaciation of the East Siberian continental margin. Nature Geoscience 6 (10):842–46. doi:10.1038/ngeo1904.
  • Ó Cofaigh, C., J. P. Briner, N. Kirchner, R. G. Lucchi, H. Meyer, and D. S. Kaufman. 2016. PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways) Introduction and overview. Quaternary Science Reviews 147 (1 – 4):1–434. doi:10.1016/j.quascirev.2016.07.006.
  • Ó Cofaigh, C., N. Kirchner, G. Fedorov, R. Noormets, and A. de Vernal. (Eds.). 2018. Arctic environmental change beyond instrumental records: Introduction and overview. Arktos 4 (1):1–3. doi:10.1007/s41063-018-0061-z.
  • Ottesen, D., and J. A. Dowdeswell. 2022. Distinctive iceberg ploughmarks on the mid-Norwegian margin: Tidally influenced chains of pits with implications for iceberg drift. Arctic, Antarctic, and Alpine Research 54:163–75. doi:10.1080/15230430.2022.2075120.
  • Past Interglacials Working Group of PAGES. 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54 (1):162–219. doi:10.1002/2015RG000482.
  • Pico, T., J. R. Creveling, and J. X. Mitrovica. 2017. Sea-level records from the U.S. mid- Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3. Nature Communications 8 (1):15612. doi:10.1038/ncomms15612.
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment 3 (1):168. doi:10.1038/s43247-022-00498-3.
  • Sarala, P., J. P. Lunkka, V. Sarajärvi, O. Sarala, and P. Filzmoser. 2022. Timing of glacial - non-glacial stages in Finland: An exploratory analysis of the OSL data. Arctic, Antarctic, and Alpine Research 54:428–42. doi:10.1080/15230430.2022.2117765.
  • Sarala, P., M. Väliranta, T. Eskola, and G. Vaikutiené. 2016. First physical evidence for forested environment in the Arctic during MIS 3. Scientific Reports 6 (1):1–9. doi:10.1038/srep29054.
  • Scambos, T., and T. Moon. 2022. How is land ice changing in the Arctic, and what is the influence on sea level? Arctic, Antarctic, and Alpine Research 54 (1):200–01. doi:10.1080/15230430.2022.2069204.
  • Sejrup, H. P., B. O. Hjelstuen, H. Patton, M. Esteves, M. Winsborrow, T. L. Rasmussen, K. Andreassen, and A. Hubbard. 2022. The role of ocean and atmospheric dynamics in the marine-based collapse of the last Eurasian Ice Sheet. Communications Earth & Environment 3 (1):119. doi:10.1038/s43247-022-00447-0.
  • Svendsen, J. I., H. Alexanderson, V. I. Astakov, I. Demidov, J. A. Dowdeswell, S. Funder, V. Gataullin, M. Henriksen, C. Hjort, M. Houmark-Nielsen, et al. 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23 (11–13):1229–71. doi:10.1016/j.quascirev.2003.12.008.
  • Swärd, H., P. Andersson, R. Hilton, C. Vogt, and M. O’Regan. 2022. Mineral and isotopic (Nd, Sr) signature of fine-grained deglacial and Holocene sediments from the Mackenzie Trough, Arctic Canada. Arctic, Antarctic, and Alpine Research 54:346–67. doi:10.1080/15230430.2022.2096425.
  • Tarasov, L., A. S. Dyke, R. M. Neal, and W. R. Peltier. 2012. A data-calibrated distribution of deglacial chronologies for the North American Ice Complex from glaciological modeling. Earth and Planetary Science Letters 315e316:30–40. doi:10.1016/j.epsl.2011.09.010.
  • Tarasov, L., and W. R. Peltier. 2005. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435 (7042):662–65. doi:10.1038/nature03617.
  • Thiede, J., V. Astakhov, H. A. Bauch, D. Y. Bolshiyanov, J. A. Dowdeswell, S. Funder, C. Hjort, V. M. Kotlyakov, J. Mangerud, S. M. Pyramikov, et al. (Eds.). 2004. What was QUEEN? Its history and international framework—an introduction to its final synthesis issue. Quaternary Science Reviews 23 (11–13):1225–511. doi:10.1016/j.quascirev.2003.12.006.
  • Thiede, J., H. A. Bauch, C. Hjort, and J. Mangerud, (Eds.). 2001. The late Quaternary stratigraphy and environments of northern Eurasia and the adjacent Arctic seas—new contributions from QUEEN. Global and Planetary Change 31 (1–4):1–474. doi:10.1016/S0921-8181(01)00109-6.
  • Torricella, F., V. M. Gamboa Sojo, K. Gariboldi, N. Douss, M. E. Musco, C. Caricchi, R. G. Lucchi, K. Carbonara, and C. M. And. 2022. Multiproxy investigation of the last 2,000 years BP marine paleoenvironmental record along the western Spitsbergen margin. Arctic, Antarctic, and Alpine Research 54:562–83. doi:10.1080/15230430.2022.2123859.
  • Turetsky, M. R., B. W. Abbott, M. C. Jones, K. W. Anthony, D. Olefeldt, E. A. G. Schuur, et al. 2020. Carbon release through abrupt permafrost thaw. Nature Geoscience 13 (2):138–43. doi:10.1038/s41561-019-0526-0.
  • Vavrus, S. J., and M. M. Holland. 2021. When will the Arctic Ocean become ice-free? Arctic. Antarctic, and Alpine Research 53:217–18. doi:10.1080/15230430.2021.1941578.
  • Vermassen, F., M. O’Regan, G. West, T. M. Cronin, and H. K. Coxall. 2021. Testing the stratigraphic consistency of Pleistocene microfossil bioevents identified on the Alpha and Lomonosov Ridges, Arctic Ocean. Arctic, Antarctic, and Alpine Research 53:09–323. doi:10.1080/15230430.2021.1988356.